Численные методы

height="82" /> и в качестве можн взять любую точку из

Если то вытекает существование такого числа с, удовлетворяющего неравенствам ( для этого делим все части на ):

(12)

что

(13)

По теореме о промежуточных значениях непрерывной функции в силу (11) , (12) найдется точка , в которой что вместе с равенством (13) доказывает теорему .

Теперь, так как то по доказанной теоремою

где - некоторая точка . Подставляя полученное в , приходим к формуле трапеций с остаточным членом :

(14)

Формула Симпсона . Предположим, что Интеграл приближенного заменяем площадью заштрихованной криволинейной трапеции, ограниченной сверху параболой, проходящей через точки де

Указанная парабола задается уравнением

в чем нетрудно убедиться, положив поочередно (ее можно также получить, построив интерполяционный многочлен второй степени и приводя подобные ) Отсюда находи ( проверить самостоятельно)

Таким образом , формула Симпсона , называемая также формулой парабол , имеет вид

(15)

Положим где -функция (4). Поскольку

то согласно формул Тейлора с остаточным членом в интегральной форме имеем

Отсюда получаем

(16)

т.к. остальные члены взаимно уничтожаются.

Поскольку то применяя к интегралу (16) теорему 1 , а затем к полученному результату лемму, находим

(17)

где нектрые точки.

Принимая во внимание, что из (16), (17) приходим к формуле

(18) т.е. к формуле Симпсона с остаточным членом.

Рассмотрим квадратурные формулы прямоугольников (3), трапеций (7) и Симпсона (15) называются каноничными.

Усложненные квадратурные формулы.

На практике, если требуется вычислить приближенно интеграл (1) , обычно делят заданный отрезок на равных частей и на кождом частичном отрезке применяют какую-либо одну каноничную квадратурную формулу, а затем суммируют полученные результаты. Построенная таким путем квадратурная формула на отрезке называется усложненной. При применении формул прямугольников и трапеций длину частичных отрезков удобно применять за , а при использовании формулы Симпсона - за .

Остановимся сначала на применении формулы прямоугольников. Пусть Обозначим частичные отрезки через

где

В соответствии с (3) полагаем

(19)

где значение в середине частичного отрезка . При этом справедливо аналогичное (6) равенство

(20) где некоторая точка.

Суммирование по всем частичным отрезкам приближенного равенства (19) приводит к усложненной квадратурной формуле прямоугольников:

(21)

а суммирование равенств (20) с учетом того,что по лемме

где -некоторая точка отрезка , дает усложненную формулу прямоугольников с остаточным членом:

(22) Совершенно àíàëîãè÷íî при услвии, что с использованием формул (7), (14) получается усложненная квадратурная формула трапеций

(23)

и отвечающая ей формула с остаточным членом

(24)

где некоторая точка.

Пусть теперь и, как обычно, Перепишем каноническую квадратурную формулу Симпсона (15) применительно к отрезку длины :

Суммируя левую и правую части этого соотношения от 0 до

N-1, получаем усложненную квадратурную формулу Симпсона (25)

Сответствующая ей формула с остаточным членом, полученная суммированием по частичным отрезкам равенств вида (18), при условии, что , такова :

(26)

где

Введем краткие обозначения

(27)

где а также положим

(28)

где

Приближенные равенства

(29)

(30)

назовем сответственно формулами прямоугольников, трапеций и формулой Симпсона, опуская слова ‘’усложненная квадратурная’’.

Из виражений остаточных членов в (22), (24), (26) видно, что формулы (29) прямоугольников трапеций точны для многочленов первой степени, т.е. для линейных функций, а формула (30) Симпсона точна для многочленов третьей степени (для них остаточный член равен нулю ). Погрешность формул (29) имеет второй порядок относительно (заведомо не лучше, если непрерывна на и не обращается в нуль), а формула Симпсона при соответствующей гладкости является формулой четвертого порядка точности. Поэтму для функций класса при малом формула Симпсона обычно дает более высокую точность, чем формула (29).

Погрешность формулы прямугольников и формулы Симпсона при вычислении интеграла (1) в силу (22), (26) удовлетворяет неравенствам

(31)

(32)

Аналогичное неравенство имеет место и для погрешности формули трапеций.

Наряду с оценками погрешноси сверху полезны оценки снизу. В частности, для погрешности формулы прямоугольников оценка снизу, вытекающая из (22), такова:

(33)

Пример. Исследовать погрешность квадратурных формул для интеграла

при .

 

Имеем

о

на

Согласно (31)-(33) получаем

Формулы прямоугольников трапеций в отдельности уступают при интегрировании гладких функций формуле Симпсона. Однако в паре они обладают ценным качеством, а именно, если не изменяет знака на то формулы (29) дают двусторонние приближения для интеграла (1), так как согласно (22), (24) их остаточные члены имеют противоположные знаки.

В рассмотренном примере Поэтому

В данной ситуации естественно положить

Тогда т.е. погрешность оценивается через самые приближенные значения интеграла.