Численные методы

нормальной форме Фробениуса. Решая характеристическое уравнение

,

находим одним из известных методов его корни которые являются собственными значениями матрицы Р и исходной матрицы А.

Теперь стоит задача отыскать собственные векторы, соответствующие этим собственным значениям, т.е. векторы такие, что

Решим ее следующим образом: найдем собственные векторы матрицы Р , а затем по определенному соотношению я пересчитаем собственные векторы матрицы А . Это соотношение дает следующая теорема.

ТЕОРЕМА. Пусть є есть собственное значение , а есть соответствующий собственный вектор матрицы Р , которая подобна матрице А ,т.е.

Тогда есть собственный вектор матрицы А , соответствующий собственному значению

Доказательство.Тривиально следует из того, что

Домножая левую и правую часть этого равенства слева на S ,

имеем

А это и означает, что -собственный вектор матрицы А ,

отвечающий собственному значению

Íàéäåì ñîáñòâåííûé вектор матрицы Р , которая имеет нормальную форму Фробениуса и подобна матрице А. Записывая в развернутой форме, имеем

или

В этой системе одна из переменных может быть сделана свободной и ей может быть придано произвольное значение. В качестве таковой возьмем и положим

Тогда последовательно находим

,

т.е. искомый собственный вектор матрицы Р имеет вид

.

Если процесс приведения матрицы А к форме Р был регулярным, то

 ñîîòâåòñòâèè ñ òåîðåìîé ñîáñòâåííûì âåêòîðîì ìàòðèöû А для собственного значения будет вектор

Таким образом, задача вычисления собственных векторов матрицы А решена.

ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ .

Пусть имеется функция которую необходимо продифференцировать несколько раз и найти эту производную в некоторой точке.

Если задан явный вид функции, то выражение для производной часто оказывается достаточно сложным и желательно его заменить более простым. Если же функция задана только в некоторых точках (таблично), то получить явный вид ее производных ввобще невозможно. В этих ситуациях возникает необходимость приближенного (численного) дифференцирования.

Простейшая идея численного дифференцирования состоит в том, что функция заменяется интерполяционным многочленом (Лагранжа, Ньютона) и производная функции приближенного заменяется соответствующей производной интерполяционного многочлена

Рассмотрим простейшие формулы численного дифференцирования, которые получаются указанным способом.

Будем предполагать, что функция задана в равностоящих узлах


Ее значения и значения производных в узлах будем обозначать

Пусть функция задана в двух точках и ее значения

Посстроим интерполяционный многочлен первой степени

Производная равна

Производную функцию в точке приближенно заменяем производной интерполяционного многочлена

(1)

Величина называется первой разностной производной.

Пусть задана в трех точках

Интерполяционный многочлен Ньютона второй степени имеет вид

Берем производную

В точке она равна

Получаем приближенную формулу

(2)

Величина называется центральной разностной производной.

Наконец, если взять вторую производную

получаем приближенную формулу.

(3)

Величина называется второй разностной производной.

Формулы (1)-(3) называются формулами численного дифференцирования.

Предполагая функцию достаточное число раз непрерывно дифференцируемой, получим погрешности приближенных формул (1)-(3).

В дальнейшем нам понадобится следующая лемма.

Лемма 1. Пусть произвольные точки, Тогда существует такая точка что

Доказательство. Очевидно неравенство

По теореме Больцано-Коши о промежуточных значениях непрерывной функции на замкнутом отрезке она принимает все значения между и Значит существует такая точка что выполняет указанное в лемме равенство.

Погрешности формул численного дифференцирования дает следующая лемма.

Лемма 2.

1.Предположим, что Тогда существует такая точка , что

(4)

Если то существует такая точка , что

(5)

Когда то существует такая, что

(6) Доказательство. По формуле Тейлора

откуда следует (4).

Если то по формуле Тейлора

(7)

где

Подставим (7) в Получаем

Заменяя в соответствии с леммою 1

получаем

Откуда и следует (6).

Равенство (5) доказывается аналогично ( доказательство провести самостоятельно).

Формулы (4)-(6) называются формулами численного дифференцирования с остаточными членами.

Погрешности формул (1)-(3) оцениваются с помощью следующих неравенств, которые вытекают из соотношений (4)-(6):

Говорят, что погрешность формулы (1) имеет первый порядок относительно (или порядка ), а погрешность формул (2) и (3) имеет второй порядок относительно (или порядка ). Также говорят, что формула численного дифференцирования (1) первого порядка точности (относительно ), а формулы (2) и (3) имеют второй порядок точности.

Указанным способом можно получать формулы численного дифференцирования для более старших производных и для большего количества узлов интерполирования.

Выбор оптимального шага. Допустим, что граница абсолютной погрешности при вычислении функции в каждой точке удовлетворяет неравенству

(8)

Пусть в некоторой окрестности точки производные, через которые выражаются остаточные члены в формулах (5), (6), непрерывны и удовлетворяют неравенствам

(9)

где - некоторые числа. Тогда полная погрешность формул (2), (3) (без учета погрешностей округления) в соответствии с (5), (6), (8), (9)не превосходит соответственно величин

Минимизация по этих величин приводит к следующим значениям :

(12)

при этом