Численные методы

/> (обратная прогонка) .

Выведем формулы для вычисления Из (3) можно получить

Подставляя имеющиеся выражения для в уравнение (1),приходим при к уравнению Последнее уравнение будет выполнено если коэффициенты выбрать такими, чтобы выражения в квадратных скобках обращались в нуль.

А именно, достаточно положить Для отыскания всех достаточно задать

Эти начальные значения находим из требования эквивалентности условия (3) при т.е. условия , первому из уравнений (2).

Таким образом, получаем

(5)

Нахождение коэффициентов по формулам (4), (5) называется прямой прогонкой. После того, как прогоночные коэффициенты найдены, решение системи (1), (2) находится по рекуррентной формуле (3), начиная с Для начала счета по этой формуле требуется знать , которое определяется из уравнений

И равно

.

Нахождение по формулам

(6)

называется обратной прогонкой. Алгоритм решения системы (1), (2) определяемый формулами (4)-(6) называется методом прогонки.

Метод прогонки можно пременять, если знаменатели выражений (4), (6) не обрщаются в нуль.

Покажем, что для возможности применения метод прогонки достаточно потребовать, чтобы коэффициенты системы (1), (2) удовлетворяли условиям

(8)

Сначала докажем по индукции, что при условиях (7), (8) модули прогоночных коэффициентов не превосходят единицы. Согласно (5), (8) имеем . Предположим,что для некоторого и докажем, что

Прежде всего для любых двух комплексных чисел и докажем неравенство

Из неравенства треугольника имеем

Откуда

Вернемся теперь к доказательству , если . Согласно имеем оценку

а, используя (7) , получаем

т.е. знаменатели выражений (4) не обращаются в нуль.

Более того

Следовательно,

Далее, учитывая второе из условий (8) и только что доказанное неравенство , имеем

т.е. не обращается в нуль и знаменатель в выражении для .

К аналогичному выводу можно прийти и в том случае, когда условия (7), (8) заменяются условиями

Таким образом при выполнении условий (7), (8) (так же как и условий (9), (10)) система (1), (2) эквивалентна системе (4)-(6). Поэтому эти условия гарантируют существование и единственность решения системы (1), (2) и возможность нахождения этого решения методом прогонки.

Кроме того, доказанные неравенства , обеспечивают устойчивость счета по рекуррентным формулам (6). Последнее означает, что погрешность,внесенная на каком-либо шаге вычислений, не будет возрастать при переходе к следующим шагам.

Действительно, пусть в формуле (6) при вместо вычислена величина

Тогда на следующем шаге вычислений, т.е. при

вместо

получим величину и погрешность окажется равной

Отсюда получаем, что ,т.е. погрешность не возрастает.

Подсчитаем число арифметических действий, выполняемых при решении задачи (1), (2) методом прогонки.

По формулам (4), что реализуемые с помощью шести арифметических действий, вычисления производятся раз, по формуле (6) выполняется 5 арифметических действий, наконец по формуле (3), требующей всего два действия, вычисления осуществляются раз. Итак в методе прогонки всего затрачивается

арифметических действий, т.е. число действий растет линейно относительно числа неизвестных

При решении же произвольной системы линейных алгебраических уравнений методом Гаусcа число действий пропорционально кубу числа неизвестных.

ВЫЧИСЛЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ МАТРИЦ.

Большое число задач математики и физики требует отыскания собственных значений и собственных векторов матриц, т.е. отыскания таких значений +, для которых существуют нетривиальные решения однородной системы линейных алгебраических уравнений

, (1)

и отыскания этих нетривиальных решений.

Здесь -квадратная матрица порядка m , - неизвестный вектор - столбец.

Из курса алгебры известно, что нетривиальное решение системы (1) существует тогда и только тогда, когда

, (2)

где Е - единичная матрица. Если раскрыть определитель , ïîëó÷àåòñÿ алгебраическое уравнение степени m относительно .Таким образом задача отыскания собственных значений сводится к проблеме раскрытия определителя по степеням и последующему решению алгебраического уравнения m- й степени.

Определитель называется характеристическим (или вековым ) определителем, а уравнение (2) называется характеристическим (или вековым ) уравнением.

Различают полную проблему собственных значений, когда необходимо отыскать все собственные значения матрицы А и соответствующие собственные векторы, и частичную проблему собственных значений, когда необходимо отыскать только некоторые собственные значения, например, максимальное по модулю собственное значение .

Метод Данилевского развертывание векового определителя.

Определение. Квадратная матрица Р порядка m называется подобной матрице А , если она представлена в виде

,

где S - невыродженная квадратная матрица порядка m.

ТЕОРЕМА. Характеристический определитель исходной и подобной матрицы совпадают .

Доказательство.

Идея метода Данилевского состоит в том, что матрица А подобным преобразованиям приводится, к так называемой нормальной форме Фробениуса

.

Характеристическое уравнение для матрицы Р имеет простой вид

т.е. коэффициенты при степенях характеристического полинома непосредственно выражаются через элементы первой строки матрицы Р.

Приведение матрицы А к нормальной форме Фробениуса Р осуществляется последовательно построкам, начиная с последеней строки.

Приведем матрицу А

подобным преобразование к виду

Пусть Можн проверить,что такой вид имеет матрица , которая равна

где

Слудующий шаг - приведение матрицы подобным преобразованием к виду , где и вторая снизу строка имеет единицу в -ом столбце, а все остальные элементы строки равны нулю:

Если то можно проверить, что такой вид имеет матрица :

где

Таким образом

Далее процедура аналогичная, если на кождом шаге в очередной строке, на месте которого подобным преобразованием нужно получить единицу, не равную нулю.

В этом случае ( будем называт его регулярным ) нормальная формула Фробениуса будет получена за ( m-1 ) шагов и будет иметь вид

Рассмотрим нерегулярный случай, когда матрица, полученная в результате подобных преобразований приведена уже к виду

и элемент . Таким образом обычная процедура метода Данилевского не подходит из-за необходимости деления на ноль.

В этой ситуации возможно два случая. В первом случае к-й

строке левее элемента есть элемент

Тогда домножая матрицу слева и справа на элементарную матрицу перестановок , получаем матрицу

,

у которой по сравнению с матрицей переставлены l -я и (k-1 )-я строка l-й и ( k-1)- й стодбец. В результате на необходимом нам месте оказывается ненулевой элемент , уже преобразованная часть матрицы не меняется, можно применять обычный шаг метода Данилевского к матрице . Она подбна матрице (и, следовательно, исходной матрице А ), т.к. елементарная матрица перестановок совпадает со своей обратной, т.е.

Рассмотрим второй нерегулярный случай, когда в матрице ýлемент и все элементы этой строки, которые тоже находятся левее его, тоже равны нулю. В этом случае характеристический определитель матрицы можно представить в виде

где і - единичные матрицы соответствующей размерности, а квадратные матрицы и имееют вид:

Обративм внимание на то, что матрица уже нормальную форму Фробениуса, и поэтому сомножитель просто развертывается в виде многочлена с коэффциентами, равными элементам первой строки.

Сомножитель , åñòü характеристический определитель матрицы . Для развертывания можн опять применять метод Данилевского, приводя матрицу подобными преобразованиями к нормальной форме Фробениуса.

Предположим теперь, что матрица А подобным преобразованиям

уже приведена к