Функция распределения электронов
Функции распределении и уравнение Лиувилля.
Плазмой обычно называют систему, состоящую из N частиц, из которых, по крайней мере, часть обладает электрическим зарядомом. В наиболее общем случае плазма состоит из положительных и отрицательных ионов, свободных электронов и нейтральных молекул, находящихся п различных возбужденных состояниях. Безусловно, такие системы являются очень сложными вследствие разнообразных процессов, протекающих в них.
Далее рассмотрим упрощенную модель—плазму, состоящую из смеси только заряженных частиц. Предположим, что всего имеется s сортов частиц; индексом
или
обозначается
сорт частиц.
Пусть —
число частиц
сорта ,
тогда полное
число частиц
равно:
Электрические свойства частиц сорта характеризуются зарядом , а динамические — массой . Обозначив через положение j-й частицы сорта , а через ее импульс, гамильтониан для такой системы можно записать следую-щим образом:
(1)
где
(2)
Гамильтониан (1) описывает полностью ионизованную плазму, которую можно рассматривать как предельное состояние в том смысле, в каком идеальный газ является предельным состоянием реального газа. Однако для вычислении даже этот гамильтониан является весьма сложным. Эта сложность связана главным образом с громоздкостью записи: наличие нескольких сортов частиц обязательно приводит к очень громоздким выражениям, в которых каждая буква снабжена большим числом верхних и нижних индексов. Такие трудности обычно не являются принципиальными и их можно обойти путем выбора еще более простои модели, рассматривающей плазму как однокомпонентный газ заряженных частиц. Однако, чтобы быть ближе к действительности, мы должны в этом случае предположить, что заряженные частицы двигаются через среду, которая обладает противоположным зарядом и полностью нейтрализует полный заряд газа . Гамильтониан такой системы можно записать в виде:
(3)
Этот гамильтониан описывает систему частиц, взаимодействующих по закону центральных парных сил с потенциалом , где е2—квадрат заряда (валентность частиц для простоты считается равной единице). При этом потенциальная энергия взаимодействия имеет вид:
(4)
Заметим, что рассмотрения, проводимые в данной курсовой, не ограничиваются только случаем плазмы, а могут быть применены к любой системе, гамильтониан которой записывается в виде (3). В общем случае параметр е2 не имеет уже смысла электрического заряда; он является просто некоторой величиной, характеризующей силу взаимодействия. Однако оказывается удобным сохранить обозначение е2 также и в общем случае.
Следует отметить, что гамильтонианы (1) и (3) описывают газ (или плазму) в отсутствие каких-либо внешних полей. В этой части книги мы будем касаться только таких простых систем. Формальное распространение теории на случай наличия внешних полей обычно осуществляется весьма просто.
Гамильтониан (1) или (3) содержит полное динамическое описание плазмы. Из него можно вывести точные динамические уравнения движения:
(5)
Однако, даже если бы мы попытались решать эти уравнения, нам пришлось бы отказаться от этой мысли с самого начала. В нашем распоряжении имеется система 6N нелинейных дифференциальных уравнений, где N — величина порядка . Следует ясно понимать, что трудности связаны не только с громоздкостью вычи-слений. Даже если бы мы могли представить себе вычислительную машину, которая смогла бы решить уравнения (5), то это решение было бы абсолютно бесполезным. Действительно,чтобы придать смысл уравнениям (5), мы должны дополнить их набором из 6N начальных условий. Одновременно измерить положения и импульсы 1023 частиц или создать такую систему, в которой положения и импульсы, всех частиц имели бы заранее установленные значения,— это абсолютно невероятно для человеческих возможностей. Поэтому точное формальное решение (5) было бы бесполезным при исследовании любых физических процессов.
Таким образом, нам нужно ввести такое понятие, которое бы возможно ближе соответствовало макроскопическим фактам. Таким понятием является понятие ансамбля, введенное Гиббсом. Вместо рассмотрения одной-единственной системы мы будем исследовать набор систем, которые динамически идентичны (т. о. имеют один и тот же гамильтониан), но отличаются друг от друга начальными условиями. Естественной системой координат для описания таких систем является пространство 6N-измерснии, называемое фазовым пространством, координатами в котором являются положения и импульсы 6N частиц. Такой системе в заданном состоянии движения будет соответствовать точка в фазовом пространстве. Динамическое поведение системы представляется движением этой точки вдоль траектории в фазовом пространстве. Следовательно, ансамблю, представляющему реальную систему, соответствует «облако» точек в фазовом пространстве, которые обычно считаются непрерывно распределенными. Математическое описание ансамбля дается функцией, соответствующей плотности «облака» в каждой точке фазового пространства:
Эту функцию назовем N-частичной функцией распределения. Здесь следует, может быть, подчеркнуть, что это описание движения отличается от описания, основанного на гамильтониане (5). Координаты хi и импульсы рi теперь являются независимыми переменными и уже не считаются функциями времени; поведение системы характеризуется изменением во времени плотности в данной точке фазового пространства .
В дальнейшем нам часто будет необходима более простая запись этой функции, или вообще любой функции F,зависящей от N импульсов и N координат. Мы будем постоянно пользоваться следующей записью:
В тех случаях, когда не могут возникнуть недоразумения, для обозначения совокупности всех импульсов от pi до pN мы будем использовать букву р.
Согласно хорошо известной в классической механике [1] теоремы Лиувилля, «облако», соответствующее ансамблю, движется как несжимаемая жидкость и, следовательно, удовлетворяет уравнению непрерывности в фазовом пространстве:
или, используя уравнения Гамильтона (5),
(6)
Второй член в этом уравнении представляет собой скобки Пуассона и определяется соотношением:
(7)
Подставляя гамильтониан для однокомпонентного газа (3) в уравнение (6), получаем следующее уравнение Лиувилля:
(8)
где vj = pj/m. Заметим, что в то время как в гамильтоновом формализме естественными переменными являются импульсы рj, в формулах, связывающих микроскопические величины с макроскопическими,более удобными оказываются скорости vj . Поэтому в дальнейшем всюду мы будем пользоваться переменными vj вместо рj. Если отсутствует магнитное поле и релятивистскими эффектами можно пренебречь, эта замена является тривиальной. N-частичная функция распределения считается функцией координат, скоростей и времени:
Соответствующая замена переменных произведена непосредственно в уравнении (8). В дальнейшем мы всегда будем пользоваться следующими сокращенными обозначениями:
(9)
Уравнение Лиувилля в этих обозначениях записывается в виде:
(10)
Из уравнения (10) следует, что интеграл от функции fN по всем координатам и скоростям является постоянным во времени. Поэтому функцию fN можно нормировать следующим образом: