Повторные и независимые испытания. Теорема Бернулли о частоте вероятности

частоте вероятности" width="581" height="44" border="0" />

.

.


Таким образом получили формулу:


.


Примеры

17. Вероятность изготовления негодной детали равна 0,0002. Найти вероятность того, что среди 10000 деталей только 2 детали будут негодными.

Решение. n=10000; k=2; p=0,0002.

Искомая вероятность


.


18. Вероятность изготовления бракованной детали равна 0,0004. Найти вероятность того, что среди 1000 деталей только 5 детали будут бракованными.

Решение. n=1000; k=5; p=0,0004.



Искомая вероятность


.


19. Вероятность выигрыша лотереи равна 0,0001. Найти вероятность того, что из 5000 попыток выиграть удастся 3 раза.

Решение. n=5000; k=3; p=0,0001.



Искомая вероятность


.


5. Теорема Бернулли о частоте вероятности


Теорема. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна p, абсолютная величина отклонения относительной частоты появления события от вероятности появления события не превысит положительного числа , приближенно равна удвоенной функции Лапласа при :


.


Доказательство. Будем считать, что производится n независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна p. Поставим перед собой задачу найти вероятность того, что отклонение относительной частоты от постоянной вероятности p по абсолютной величине не превышает заданного числа . Другими словами, найдем вероятность осуществления неравенства


. (*)


Заменим неравенство (*) ему равносильными:


.


Умножая эти неравенства на положительный множитель , получим неравенства, равносильные исходному:


.


Тогда вероятность найдем следующим образом:


.


Значение функции находится по таблице(см. приложение2).

Примеры

20. Вероятность того, что деталь не стандартна, p=0,1. Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,1 по абсолютной величине не более, чем на 0,03.

Решение. n=400; p=0,1; q=0,9; =0,03. Требуется найти вероятность. Пользуясь формулой


,


имеем


.


По таблице приложения2 находим . Следовательно, . Итак, искомая вероятность равна 0,9544.

21. Вероятность того, что деталь не стандартна, p=0,1. Найти, сколько деталей надо отобрать, чтобы с вероятностью, равной 0,9544, можно было утверждать, что относительная частота появления нестандартных деталей(среди отобранных) отклонится от постоянной вероятности p по абсолютной величине не более чем на 0,03.

Решение. По условию, p=0,1; q=0,9; =0,03; . Требуется найти n. Воспользуемся формулой


.


В силу условия



Следовательно,



По таблице приложения 2 находим . Для отыскания числа n получаем уравнение . Отсюда искомое число деталей n=400.

22. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти, какое отклонение относительной частоты появления события от его вероятности можно ожидать с вероятностью 0,9128 при 5000 испытаниях.

Решение. Воспользуемся той же формулой, из которой следует:


.


Литература


1. Гмурман Е.В. "Теория вероятностей и математическая статистика", Москва, "Высшая школа"2003.

2. Гмурман Е.В. "Руководство к решению задач по теории вероятностей и математической статистике", Москва "Высшая школа"2004.

3. Гнеденко Б.В. "Курс теории вероятностей", Москва, "Наука"1988.

4. Колемаев В.А., Калинина В.Н., Соловьев В.И., Малыхин В.И., Курочкин А.П. "Теория вероятностей в примерах и задачах", Москва, 2001.

5. Вентцель Е.С. "Теория вероятностей", Москва, "Высшая школа"1998.


Приложения


Приложение 1


Таблица значений функции



0

1

2

3

4

5

6

7

8

9

1.6 1109 1092 1074 1057 1040 1023 1006 0989 0973 0957
1.7 0940 0925 0909 0893 0878 0863 0648 0833 0818 0804
1.8 0790 0775 0761 0748 0734 0721 0707 0694 0681 0669
1.9 0656 0644 0632 0620 0608 0596 0584 0573 0562 0551
2,0 0540 0529 0519 0508 0498 0488 0478 0468 0459 0449
2.1 0440 0431 0422 0413 0404 0396 0387 0379 0371 0363
2.2 0355 0347 0339 0332 0325 0317 0310 0303 0297 0290
2.3 0283 0277 0270 0264 0258 0252 0246 0241 0235 0229
2,4 0224 0219 0213 0208 0203 0198 0194 0189 0184 0180
2.5 0175 0171 0167 0163 0158 0154 0151 0147 0143 0139
2.6 0136 0132 0129 0126 0122 0119 0116 0113 0110 0107
2,7 0104 0101 0099 0096 0093 0091 0088 0086 0084 0081
2,8 0079 0077 0075 0073 0071 0069 0067 0065 0063 0061
2.9 0060 0058 0056 0055 0053 0051 0050 0048 0047 0043
3,0 0044 0043 0042 0040 0039 0038 0037 0036 0035 0034
3,1 0033 0032 0031 0030 0029 0028. 0027 0026 0025 0025
3,2 0024 0023 0622 0022 0021 0020 0020 0019 0018 0018
3,3 0017 0017 0016 0016 0015 0015 0014 0014 0013 0013
3,4 0012 0012 0012 0011 0011 0010 0010 0010 0009 0009
3,5 0009 0008 0008 0008 0008 0007 0007 0007 0007 0006
3,6 0006 0006 0006 0005 0005 0005 0005 0005 0005 0004
3,7 0004 0004 0004 0004 0004 0004 0003 0003 0003 0003
3,8 0003 0003 0003 0003 0003 0002 0002 0002 0002 0002
3,9 0002 0002 0002 0002 0002 0002 0002 0002 0001 0001

Приложение 2


Таблица значений функции

x

x

x

x

0900 0,0000 0,32 0,1255 0,64 0,2389 0,96 0,3315
0,01 0,0040 0,33 0,1293 0,65 0,2422 0,97 0,3340
0,02 0,0080 0,34 0,1331 0,66 0,2454 0,98 0,3365
0,03 0,0120 0,35 0,1368 0,67 0,2486 0.99 0,3389
0,04 0,0160 0,36 0,1406 0,68 0,2517 1,00 0,3413
0,05 0,0199 0,37 0,1443 0,69 0,2549 1,01 0,3438
0,06 0,0239 0,38 0,1480 0,70 0,2580 1,02 0,3461
0,07 0,0279 0,39 0,1517 0,71 0,2611 1,03 0,3485
0,08 0,0319 0,40 0,1554 0,72 0,2642 1,04 0,3508
0,09 0,0359 0,41 0,1591 0,73 0,2673 1,05 0,3531
0,10 0,0398 0,42 0,1628 0,74 0,2703 1,06 0,3554
0,11 0,0438 0,43 0,1664 0,75 0,2734 1,07 0,3577
0,12 0,0478 0,44 0,1700 0,76 0,2764 1,08 0,3599
0,13 0,0517 0,45 0,1736 0,77 0,2794 1.09 0,3621
0,14 0,0557 0,46 0,1772 0,78 0,2823 1.10 0,3643
0,15 0,0596 0,47 0,1808 0,79 0,2852 3665 0,3665
0,16 0,0636 0,48 0,1844 0,80 0,2881 3686 0,3686
0,17 0,0675 0,49 01879 0,81 0,2910 1,13 0,3708.
0,18 0,0714 0,50 0,1915 0,82 0,2939 1,14 0,3729
0,19 0,0753 0,51 0,1950 0,83 0,2967 1,15 0,3749
0,20 0,0793 0,52 0,1985 0,84 0,2995 1,16 0,3770
0,21 0,0832 0,53 0,2019 0,85 0,3023 1,17 0,3790
0,22 0,0871 0,54 0,2054 0,86 0,3051 1,18 0,3810
0,23 0,0910 0,55 0,2088 0,87 0,3078 1,19 0,3830
0,24 0,0948 0,56 0,2123 0,88 0,3106 1,20 0,3849
0,25 0,0987 0,57 0,2157 0,89 0,3133 1.21 0,3869
0,26 0,1026 0,58 0,2190 0,90 0,3159 1,22 0/3883
0,27 0,1064 0,59 0,2224 0,91 0,3186 1,23 0,3907
0,28 0,1103 0,60 0,2257 0,92 0,3212 1.24 0,3925
0,29 0,1141 0,61 0,2291 0,93 0,3238 1,25 0,3944
0,30 0,1179 0,62 0,2324 0,94 0,3264

0,31 0,1217 0,63 0,2357 0,95 0,3289


x

x

x

x

1,26 0,3962 1,59 0,4441 1,92 0,4726 2,50 0,4938
1,27 0,3980 1,60 0,4452 1,93 0,4732 2,52 0,4941
1,28 0,3997 1,61 0,4463 1,94 0,4738 2,54 0,4945
1,29 0.4015 1,62 0,4474 1,95 0,4744 2,56 0,4948
1,30 0,4032 1,63 0.4484 1.96 0,4750 2,58 0,4951
1,31 0,4049 1,64 0,4495 1,97 0,4756 2,60 0,4953
1,32 0.4066 1,65 0,4505 1,98 0,4761 2,62 0,4956
1,33 0,4082 1,66 0,4515 1,99 0,4767 2,64 0,4959
1,34 0.4099 1,67 0.4525 2.00 0,4772 2,66 0,4961
1.3S 0.4115 1,68 0,4535 2,02 0,4783 2,68 0,4963
1,36 0.4131 1,69 0,4545 2,04 0,4793 2,70 0,4965
1,37 0.4147 1,70 0,4554 2,06 0,4803 2,72 0,4967
1,38 0.4162 1.71 0,4564 2,08 0,4812 2,74 0,4969
1,39 0.4177 1,72 0,4573 2,10 0,4821 2,76 0,4971
1.40 0,4192 1,73 0,4582 2,12 0,4830 2,78 0,4973
1.41 0,4207 1.74 0,4591 2,14 0,4838 2,80 0,4974
1.42 0.4222 1,75 0.4599 2,16 0,4846 2,82 0,4976
1.43 0.4236 1,76 0,4608 2,18 0,4854 2,84 0,4977
1.44 0,4251 1.77 0,4616 2,20 0,4861 2,86 0,4979
1,45 0.4265 1,78 0.4625 2,22 0,4868 2,88 0,4980
1.46 0,4279 1,79 0,4633 2,24 0,4875 2,90 0,4981
1.47 0,4292 1,80 0,4641 2,26 0,4881 2,92 0,4982
1,48 0,4306 1.81 0,4649 2,28 0,4887 2,94 0,4984
1,49 0.4319 1,82 0,4656 2,30 0,4893 2,96 0,4985
1.50 0,4332 1,83 0,4664 2,32 0,4898 2.98 0,4986
1,51 0,4345 1,84 0,4671 2,34 0,4904 3,00 0,49865
1.52 0,4357 1,85 0,4678 2,36 0,4909 3,20 0,49931
1.53 0,4370 1,86 0,4686 2,38 0,4913 3.40 0,49966
1.54 0,4382 1,87 0,4693 2,40 0,4918 3,60 0,49984
1,55 0,4394 1.88 0,4699 2,42 0,4922 3,80 0,49992
1.S6 0,4406 1.89 0,4706 2,44 0,4927 4,00 0,49996
1,57 0,4418 1,90 0,4713 2,46 0,4931 4,50 0,49999
1,58 0,4429 1,91 0,4719 2,48 0,4934 5,00

0,49999