Лекции по Линейной алгебре
Пусть . Надо проверить, что l взаимно однозначно и сохраняет операцию. По построению l сюръективно. Инъективность вытекает из закона правого сокращения: . Сохранение операции фактически уже было установлено выше: .
Следствие.
Любая абстрактная группа изоморфна группе преобразований некоторого множества (Достаточно взять G=H и рассмотреть левые сдвиги).
Для случая конечных групп получается теорема Кэли:
Любая группа из n элементов изоморфна подгруппе группы подстановок степени n.
Для каждого определим отображение (правый сдвиг на элемент h) формулой .
Теорема B.
.
Множество является группой преобразований множества G.
Соответствие является изоморфизмом групп H и R(H,G).
Доказательство теоремы B вполне аналогично доказательству теоремы A. Отметим только, что . Именно поэтому в пункте 3 теоремы В появляется не , а .
С) Для каждого определим (сопряжение или трансформация элементом h ) формулой .
Теорема С.
Каждое отображение является изоморфизмом группы G с собой (автоморфизмом группы G).
Множество является группой преобразований множества G.
Отображение сюръективно и сохраняет операцию.
Доказательство.
Поскольку , отображение взаимно однозначно как композиция двух отображений такого типа. Имеем: и потому сохраняет операцию.
Надо проверить, что и . Оба равенства проверяются без труда.
Сюръективность отображения имеет место по определению. Сохранение операции уже было проверено в пункте 2.
Замечание об инъективности отображения q.
В общем случае отображение q не является инъективным. Например, если группа H коммутативна, все преобразования будут тождественными и группа тривиальна. Равенство означает, что или (1) В связи с этим удобно ввести следующее определение: множество называется централизатором подгруппы . Легко проверить, что централизатор является подгруппой H. Равенство (1) означает, что . Отсюда вытекает, что если централизатор подгруппы H в G тривиален, отображение q является изоморфизмом.
Смежные классы; классы сопряженных элементов.
Пусть, как и выше, некоторая подгруппа. Реализуем H как группу L(H,G) левых сдвигов на группе G. Орбита называется левым смежным классом группы G по подгруппе H. Аналогично, рассматривая правые сдвиги, приходим к правым смежным классам .Заметим, что стабилизатор St(g, L(H,G)) (как и St(g, R(H,G)) ) тривиален поскольку состоит из таких элементов , что hg=g. Поэтому, если группа H конечна, то все левые и все правые смежные классы состоят из одинакового числа элементов, равного .
Орбиты группы называются классами сопряженных элементов группы G относительно подгруппы H и обозначаются Если G=H, говорят просто о классах сопряженных элементов группы G. Классы сопряженных элементов могут состоять из разного числа элементов . Это число равно , где Z(H,g) подгруппа H , состоящая из всех элементов h перестановочных с g.
Пример.
Пусть - группа подстановок степени 3. Занумеруем ее элементы: =(1,2,3); =(1,3,2); =(2,1,3); =(2,3,1); =(3,1,2); =(3,2,1). Пусть . Легко проверить, что левые смежные классы суть:
, , .
Правые смежные классы:
, , .
Все эти классы состоят из 2 элементов.
Классы сопряженных элементов G относительно подгруппы H:
, , , .
В то же время,
, , .
Теорема Лагранжа.
Пусть H подгруппа конечной группы G. Тогда порядок H является делителем порядка G.
Доказательство.
По свойству орбит G представляется в виде объединения непересекающихся смежных классов: . Поскольку все смежные классы состоят из одинакового числа элементов, , откуда и вытекает теорема.
Замечание. Число s левых (или правых) смежных классов называется индексом подгруппы .
Следствие.
Две конечные подгруппы группы G порядки которых взаимно просты пересекаются только по нейтральному элементу.
В самом деле, если эти подгруппы, то их общая подгруппа и по теореме Лагранжа - общий делитель порядков H и K то есть 1.
- Нормальные подгруппы. Факторгруппы.
Пусть любая подгруппа и -любой элемент. Тогда также является подгруппой G притом изоморфной H, поскольку отображение сопряжения является изоморфизмом. Подгруппа называется сопряженной по отношению к подгруппе H.
Определение.
Подгруппа H называется инвариантной или нормальной в группе G, если все сопряженные подгруппы совпадают с ней самой: .
Равенство можно записать в виде Hg = gH и таким образом, подгруппа инвариантна в том и только в том случае, когда левые и правые смежные классы по этой подгруппе совпадают.
Примеры.
В коммутативной группе все подгруппы нормальны, так как отображение сопряжения в такой группе тождественно.
В любой группе G нормальными будут , во первых, тривиальная подгруппа и, во вторых, вся группа G. Если других нормальных подгрупп нет, то G называется простой.
В рассмотренной выше группе подгруппа не является нормальной так как левые и правые смежные классы не совпадают. Сопряженными с H будут подгруппы и .
Если - любая подгруппа, то ее централизатор Z = Z(H,G) - нормальная подгруппа в G , так как для всех ее элементов z . В частности, центр Z(G) любой группы G -нормальная подгруппа.
Подгруппа H индекса 2 нормальна. В самом деле, имеем 2 смежных класса : H и Hg = G-H = gH.
Теорема (свойство смежных классов по нормальной подгруппе).
Если подгруппа H нормальна в G, то множество всевозможных произведений элементов из двух каких либо смежных классов по этой подгруппе снова будет одним из смежных классов, то есть .
Доказательство.
Очевидно, что для любой подгруппы H .Но тогда
= = = .
Таким образом, в случае нормальной подгруппы H определена алгебраическая операция на множестве смежных классов. Эта операция ассоциативна поскольку происходит из ассоциативного умножения в группе G. Нейтральным элементом для этой операции является смежный класс . Поскольку , всякий смежный класс имеет обратный. Все это означает, что относительно этой операции множество всех (левых или правых) смежных классов по нормальной подгруппе является группой. Она называется факторгруппой группы G по H и обозначается G/H. Ее порядок равен индексу подгруппы H в G.
Абстрактная теория групп
(продолжение)
9 Гомоморфизм.
Гомоморфизм групп - это естественное обобщение понятия изоморфизма.
Определение.
Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть : .
Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.
Примеры.
Разумеется, всякий изоморфизм является гомоморфизмом.
Тривиальное отображение является гомоморфизмом.
Если - любая подгруппа, то отображение вложения будет инъективным гомоморфизмом.
Пусть - нормальная подгруппа. Отображение группы G на факторгруппу G/H будет гомоморфизмом поскольку . Этот сюръективный гомоморфизм называется естественным.
По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом.
Отображение , которое каждому перемещению n- мерного пространства ставит в соответствие ортогональный оператор (см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции .
Теорема (свойства гомоморфизма)
Пусть - гомоморфизм групп, и - подгруппы. Тогда:
, .
- подгруппа.
-подгруппа, причем нормальная, если таковой была .
Доказательство.
и по признаку нейтрального элемента . Теперь имеем: .
Пусть p = a(h) , q = a(k) . Тогда и . По признаку подгруппы получаем 2.
Пусть то есть элементы p = a(h) , q = a(k) входят в . Тогда то есть . Пусть теперь подгруппа нормальна и - любой элемент. и потому .
Определение.
Нормальная подгруппа называется ядром гомоморфизма .Образ этого гомоморфизма обозначается .
Теорема.
Гомоморфизм a инъективен тогда и только тогда, когда
Доказательство.
Поскольку , указанное условие необходимо. С другой стороны, если , то и если ядро тривиально, и отображение инъективно.
Понятие гомоморфизма тесно связано с понятием факторгруппы.
Теорема о гомоморфизме.
Любой гомоморфизм можно представить как композицию естественного (сюръективного) гомоморфизма , изоморфизма и (инъективного) гомоморфизма (вложения подгруппы в группу): .
Доказательство.
Гомоморфизмы p и i описаны выше (см. примеры) Построим изоморфизм j. Пусть . Элементами факторгруппы являются смежные классы Hg . Все элементы имеют одинаковые образы при отображении a : . Поэтому формула определяет однозначное отображение . Проверим сохранение операции .Поскольку отображение j очевидно сюръективно, остается проверить его инъективность. Если , то и потому . Следовательно, и по предыдущей теореме j инъективно.
Пусть - любой элемент. Имеем : . Следовательно, .
10 Циклические группы.
Пусть G произвольная группа и - любой ее элемент. Если некоторая подгруппа содержит g , то она содержит и все степени . С другой стороны, множество очевидно является подгруппой G .
Определение.
Подгруппа Z(g) называется циклической подгруппой G с образующим элементом g. Если G = Z(g) , то и вся группа G называется циклической.
Таким образом, циклическая подгруппа с образующим элементом g является наименьшей подгруппой G, содержащей элемент g.
Примеры
Группа Z целых чисел с операцией сложения является циклической группой с образующим элементом 1.
Группа поворотов плоскости на углы кратные 2p¤n является циклической с образующим элементом - поворотом на угол 2p¤n. Здесь n = 1, 2, ...
Теорема о структуре циклических групп.
Всякая бесконечная циклическая группа изоморфна Z. Циклическая группа порядка n изоморфна Z / nZ .
Доказательство.
Пусть G = Z(g) - циклическая группа. По определению, отображение - сюръективно. По свойству степеней и потому j - гомоморфизм. По теореме о гомоморфизме . H = KerjМZ. Если H - тривиальная подгруппа, то . Если H нетривиальна, то она содержит положительные числа. Пусть n - наименьшее положительное число входящее в H. Тогда nZМH. Предположим, что в H есть и другие элементы то есть целые числа не делящееся на n нацело и k одно из них. Разделим k на n с остатком: k = qn +r , где 0 < r < n. Тогда r = k - qn О H , что противоречит выбору n. Следовательно, nZ = H и теорема доказана.
Отметим, что » Z / nZ .
Замечание.
В процессе доказательства было установлено, что каждая подгруппа группы Z имеет вид nZ , где n = 0 ,1 , 2 ,...
Определение.
Порядком элемента называется порядок соответствующей циклической подгруппы Z( g ) .
Таким образом, если порядок g бесконечен, то все степени - различные элементы группы G. Если же этот порядок равен n, то элементы различны и исчерпывают все элементы из Z( g ), а N кратно n . Из теоремы Лагранжа вытекает, что порядок элемента является делителем порядка группы. Отсюда следует, что для всякого элемента g конечной группы G порядка n имеет место равенство .
Следствие.
Если G - группа простого порядка p, то - циклическая группа.
В самом деле, пусть - любой элемент отличный от нейтрального. Тогда его порядок больше 1 и является делителем p, следовательно он равен p. Но