Микропроцессорная системы отображения информации
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
"Комсомольский-на-Амуре государственный технический университет"
Инженерно- экономический факультет
Кафедра "Промышленная электроника"
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ
по курсу "Системы отображения информации"
Микропроцессорная системы отображения информации
Выполнил студент группы 4ПЭа-1 Д.В. Евпаков Руководитель проекта Н.Н. Любушкина
Н.Контр. Н.Н. Любушкина
2009
Отображение информации - это свойство технической системы воспроизводить требуемую информацию в форме, удобной для непосредственного восприятия человеком.
Технические средства, используемые для формирования информационных моделей, называются средствами отображения информации (СОИ). С помощью СОИ полученная от одного или нескольких источников информация преобразуется в информационную модель, удобную для непосредственного восприятия.
Существует три способа отображения информации:
индикация - представление информации в форме изображения (информационной модели), параметры которого обеспечивают требуемую быстроту и точность восприятия, информационную емкость и удовлетворяют требованиям инженерной психологии (эргономики);
сигнализация - это отображение информации для привлечения внимания к изменению состояния системы, характеризуемое четко различными изменениями параметров информационной модели;
регистрация - это представление информации на материальном носителе с возможностью хранения без затрат энергии.
Большую часть информации (около 80%) человек получает по зрительному каналу. Если информация создается или передается электронными средствами, она воспроизводится с помощью средств отображения информации, которые являются электронным переводчиком, позволяющим воспринять закодированную электрическими сигналами информацию.
К средствам отображения информации относятся устройства коллективного пользования (стадионные, вокзальные и другие информационные табло), персональный компьютер, индикаторы, встроенные в различные измерительные или бытовые электронные приборы. Соответственно различаются и предъявляемые к этим средствам психофизиологические, энергетические, стоимостные, габаритные и другие требования, которые должен учитывать разработчик.
Основным узлом СОИ является индикатор, преобразующий электрические сигналы в видимое изображение. До сих пор основным типом индикатора, используемым в СОИ, остается электронно-лучевая трубка (ЭЛТ), которой присущи все типичные недостатки электровакуумных приборов: большое потребление мощности, высокие питающие напряжения, большие масса и габаритные размеры. На смену ЭЛТ, особенно в применениях, связанных с ЭВМ, пришли матричные индикаторные панели самых различных типов - газоразрядные, электролюминесцентные, жидкокристаллические. В отличие от ЭЛТ управление ими построено на цифровых принципах, что соответствует современным тенденциям развития электроники.
Другим важным компонентом СОИ являются интегральные микросхемы (ИМС). Современные СОИ почти целиком строятся на базе ИМС со средней и высокой степенью интеграции, все шире в них используются микропроцессорные средства и микро-ЭВМ.
Развитие средств отображения информации происходит в направлении использования в них как усовершенствованных типов электроннолучевых индикаторов, так и плоских матричных индикаторов, которые перспективны для высококачественного отображения информации.
Проектирование средств отображения информации включает в себя создание информационной модели с учетом представляемой информации и свойств человека-оператора, выбор типа индикатора, разработку на этой основе структурной схемы СОИ, разработку модулей системы и т. д.
Для правильного проектирования средств отображения информации необходимо учитывать структуру и технические характеристики индикаторов, особенности построения модулей системы на основе современных интегральных микросхем, т. е. проектирование средств отображения информации требует комплексного подхода со стороны специалистов.
Задачей курса "Средства отображения информации" является ознакомление студентов с принципами построения аппаратуры, физическими особенностями различных типов электронных индикаторов и т. д.
Рассмотрение этих вопросов позволит показать взаимодействие средств промышленной электроники в едином комплексе аппаратных и программных средств. Приобретенные таким образом навыки могут быть использованы при проектировании электронных устройств самого различного назначения с широким применением интегральных схем.
Работа любого устройства начинается с его включения.
После включения индикаторы должны быть погашены, кроме левого знакоместа, где должен располагаться курсор. В качестве типа курсора будем использовать негативный блок.
При вводе информации с клавиатуры курсор смещается вправо, оставляя на своём месте введённый символ. По достижении курсором конца строки, то есть крайней правой позиции, введенная на индикатор информация остаётся в ОЗУ, а сам индикатор очищается, и курсор перемещается в начало строки. Таким образом, система готова принимать информацию в следующую строку.
Когда курсор достигает последней позиции последней строки, ввод информации заканчивается. Дальнейшее перемещение курсора по введенному тексту осуществляется клавишами управления курсора (вверх, вниз, вправо, влево).
Клавиша "Insert" включает и выключает режим вставки. При включенном режиме вставки, в процессе ввода информации, все символы справа от курсора будут сдвигаться вместе с курсором и выходя за пределы последней строки теряются. При выключенном режиме вставки, ввод информации производиться поверх старой, стирая предыдущий символ.
Клавиша "Delete" удаляет символ слева от курсора (заменяет на пробел) и перемещает курсор на одну позицию влево. Если при этом включен режим вставки, то вслед за курсором перемещаются все символы расположенные правее.
Режим редактирования.
Замена. Для замены символа необходимо подвести курсор к нужной позиции посредством функциональных клавиш: "¬", "®". При нажатии любой информационной клавиши в той позиции, на которую указывает курсор, автоматически производится замена символа. При этом, старый символ теряется.
Удаление. Для удаления необходимо подвести курсор к нужной позиции и нажать клавишу "Del". При этом вся информация в строке, записанная после текущей позиции, сдвигается влево, а в последней позиции строки появится пробел. Символ в текущей позиции теряется. Курсор останется на той же позиции, на которую указывал до удаления.
Вставка. Для вставки необходимо курсор подвести к той позиции, перед которой будет производиться вставка символа. Затем, после нажатия функциональной клавиши "Ins", вся информация, записанная после текущей позиции и включая текущую позицию, сдвигается вправо, при этом последний символ в строке теряется, а курсор остается на прежней позиции. После нажатия любой информационной клавиши в незанятой позиции появляется соответствующий символ.
Сброс. При нажатии клавиши "Reset" происходит сброс информации во всех строках. Затем курсор переходит в первую позицию первой строки.
Отображение. Для вывода определенной введенной строки на индикацию используются клавиши "", "Ї", при этом, курсор остается в том же столбце, в котором он находился до перехода на другую строку. Если текущей строкой является первая и нажимается клавиша "", то на экране появится содержимое последней строки. Если текущей строкой является последняя и нажимается клавиша "Ї", то на экране появится содержимое первой строки.
Всего в данной системе используется 49 клавиш, из них 42 информационных, 7 функциональных, а также имеются две клавиши (Shift и Reset), которые не входят в основную матрицу клавиатуры и предназначены для изменения режима работы клавиатуры
Структурная схема будет базироваться на магистрально-модульном принципе организации МП - системы. В такой системе связь всех устройств (модулей) осуществляется с помощью общих шин. Передача информации может осуществляться одновременно только между двумя модулями.
Структурная схема микропроцессорного устройства представлена на рисунке 1.
ЦП – центральный процессор; ТГ – тактовый генератор; У В/В – устройство ввода/ вывода; ПЗУ – постоянное запоминающее устройство; ОЗУ – оперативное запоминающее устройство; СА – селектор адреса; ШУ – шина управления; ША – шина адреса; ШД – шина данных
Рисунок 1 – Структурная схема микропроцессорного устройства
Основным узлом разрабатываемого устройства отображения информации является ЦП. В его функции входит управление всеми остальными узлами устройства. Отдельные блоки соединяются между собой линиями, объединяемыми по сходству назначения в шины. Число линий в шине обычно соответствует разрядности передаваемого слова. С помощью 16-разрядной шины адреса обеспечивается выбор одной из 65536 ячеек памяти. По 8-разрядной шине данных передаются команды и данные. Ограниченное число внешних выводов микропроцессора (МП) приводит к необходимости использования для передачи информации двунаправленной шины данных. Синхронизация работы МП, ПЗУ, ОЗУ памяти или внешнего устройства при обмене информацией производится с помощью сигналов сопровождения информации, передаваемых по шине управления.
Все действия ЦП заранее запрограммированы и подчинены последовательности команд, хранимой в ПЗУ. Кроме того, в ПЗУ записаны необходимые для работы константы, например, формы знаков. Для хранения вводимой информации и программ необходима оперативная память (ОЗУ).
Устройство ввода/вывода предназначено для ввода информации в систему и вывода обработанной информации на индикацию.
Селектор адреса предназначен для выбора одного из внешних устройств.
МП синхронизируется тактовыми импульсами, формируемыми ТГ. Для тактирования используется двухфазная система импульсов C1 и C2, а максимальная тактовая частота МП составляет 2МГц.
Разработаем функциональная схема центрального процессора.
Функциональная схема центрального процессора представлена на рисунке 2.
Рисунок 2 – Функциональная схема центрального процессора
При включении питания или при нажатии клавиши "Reset", система начального сброса (СНС) формирует сигнал "Установка нуля", который поступает на вход генератора тактовых импульсов (ГТИ) "RESIN". ГТИ формирует сигнал "SR", поступающий на одноименный вход ЦП, что обеспечивает автоматическую установку микропроцессора в исходное состояние.
ГТИ, формирует сигналы C1 и C2 – тактовые сигналы с различными фазами; RDY – сигнал "Готовность"; STB – стробирующий сигнал состояния, формируемый при наличии на входе "SYN" напряжения высокого уровня, поступающего с выхода микропроцессора в начале каждого машинного цикла. Сигнал "STB" используется для занесения информации состояния МП в системный контроллер для формирования управляющих сигналов.
Так как к шине адреса может быть подключено большое число внешних устройств, а выходные линии канала адреса не обладают достаточной нагрузочной способностью, то в схему необходимо ввести буферные устройства шины адреса (БА). Для увеличения нагрузочной способности шины данных используется буфер данных (БД).
Для формирования управляющих сигналов используется системный контроллер (СК). От МП в СК подаются сигналы: TR– выдача информации; RC – прием информации.
СК формирует следующие управляющие сигналы: RD – чтение памяти; WR – запись в память; RDIO – чтение из устройства ввода/вывода; WRIO – запись в устройство ввода/ вывода.
Так как МП работает по опросу, то выводы МП "INT" и "HLD" заземляются. В случае, если МП СОИ работает по прерываниям, то подается уровень логической единице.
Разработаем функциональная схему блока запоминающих устройств
Функциональная схема блока запоминающих устройств представлена на рисунке 3.
Рисунок 3 – Функциональная схема блока запоминающих устройств
Входы ПЗУ и ОЗУ A0 – А10 подключены к младшим адресам шины адреса. На входы выборка кристалла (CS) подаются сигналы с СА. На вход RD ПЗУ подается сигнал RD с системного контроллера и по низкому уровню этого сигнала данные по указанному адресу передаются на ШД. На вход WR/RD ОЗУ подается сигнал WR с СК и по низкому уровню этого сигнала данные передаются на ШД.
Разработаем функциональную схема селектора адреса.
Функциональная схема селектора адреса представлена на рисунке 4.
Рисунок 4 – Функциональная схема блока селектора адреса
Селектор адреса представляет собой устройство управления другими устройствами системы. С ША адрес поступает на вход СА, а на выходе получаем сигнал выборки устройства из числа, входящих в систему.
МП КР580ВМ80А может адресовать до 256 устройств ввода-вывода и обеспечить адресацию внешней памяти объемом 65536 байт.
Распределение адресного пространства представлено в таблице 1.
Двоичный адрес | Адрес | Устройство | |||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | (HEX) | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0000 | Начальный адрес ПЗУ |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 07FF | Конечный адрес ПЗУ |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0800 | Начальный адрес ОЗУ |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0FFF | Конечный адрес ОЗУ |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1000 | Начальный адрес ПККИ |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1001 | Конечный адрес ПККИ |
Таблица 1 – Распределение адресного пространства системы
Селектор адреса спроектируем с помощью логических элементов на основе распределенного адресного пространства.
Для блока запоминающих устройств на линиях A12-A15 находятся логические нули, а линия A11 управляет выборкой ПЗУ (A11=0) или ОЗУ (A11=1). Такое включение позволяет объединить оба запоминающих устройства в едином адресном пространстве объемом 4Кбайта, причем ПЗУ располагается в области 0000H – 07FFH, а ОЗУ в области 0800H – 0FFFH. Такое расположение удобно тем, что после установки в исходное состояние, процессор начинает выборку команд с адреса 0000H, где и располагается ПЗУ, содержащее основную программу.
Для ПККИ на линиях A13-A15 находятся логические нули, а линия A12 управляет выборкой ПККИ (A12=1).
Разработаем функциональную схема блока ввода.
Программируемый контроллер клавиатуры и индикации (ПККИ) обеспечивает сканирование клавиатуры и вывод информации на дисплей.
Функциональная схема приведена на рисунке 5.
Рисунок 5 - Функциональная схема блока
Значение внутреннего счетчика ПККИ с линий сканирования поступает на дешифратор, преобразующий четырехразрядный в восьмиразрядный код. При нажатии клавиши сигнал проходит на линии возврата RET0-RET7, где в зависимости от того, какая клавиша была нажата, во внутреннее ОЗУ записываются "координаты клавиши", которые выдаются на шину данных. ЦП в ходе сканирования устройств считывает слово состояния ПККИ, затем ЦП читает код нажатой клавиши, обрабатывает его и выставляет эквивалент клавиши в коде КОИ -7 на шину данных (таблица КОИ - 7 записана в центральном ПЗУ).
Код символа в КОИ - 7 с ШД поступает в знакогенератор, где по адресу кода записан позиционный код символа, то есть код, который будет непосредственно выводиться на индикаторы. Далее код поступает в ПККИ, где записывается в ОЗУ отображения, и поступает на выходы DSPA0 - DSPA3, DSPB0 - DSPB3. Далее код поступает на блок согласования БС1, где усиливается до уровня, необходимого для активизации свечения индикатора. Индикаторы циклически перебираются дешифратором ДШ2. В зависимости от текущего значения счетчика подается сигнал на тот или иной индикатор с помощью блока согласования БС2, и, соответственно, на индикаторе зажигается определенный символ.
Высвечивание информации происходит динамически, т.е. в любой момент времени горит только один из индикаторов дисплея, гашение индикаторов осуществляется сигналом BD, который поступает с ПККИ на запрещающий вход дешифратора в момент переключения с одного индикатора на другой. Разрешающая способность или острота зрения характеризуется минимальным углом, при котором возможно отдельное различение двух соседних точек. Этот угол называется порогом остроты зрения ао. Для нормального зрения порог остроты равен 1. Рекомендуемое значение ао в расчетах берут равным 2 – 3.
Рассчитаем высоту индикатора по формуле:
h = 2Ltg(a/2),
где h – высота индикатора; L – расстояние до наблюдателя; а – угловой размер индикатора. Вычислим высоту индикатора при расстоянии до наблюдателя 0,5 м с учетом остроты зрения равным десяти:
h = 2·0,5tg(3/2) = 0,026 м.
Выбираем газоразрядный индикатор ИН-23.
Внешний вид, цоколевка и условно- графическое обозначение индикатора ИН-23 - показаны на рисунке 6.
Рисунок 6 - Газоразрядный индикатор ИН-23
ИН-23 – индикатор буквенно-цифровой одноразрядный газоразрядный предназначен для отображения информации в виде букв русского, латинского, греческого алфавитов, цифр, символов и других специальных знаков в средствах отображения информации индивидуального пользования. Индикация – боковая.
Корпус стеклянный миниатюрный. Масса не более 30 г.
Технические характеристики:
Цвет свечения…………………………………..оранжево-красный
Яркость свечения, кд/м……………………..................200
Угол обзора, град………………………………………..100
Напряжение, В:
источника питания……………………………………..200
возникновения и поддержания разряда……………….170
Ток, мА………………………………………………….0,3 – 3,0
Для образования цифр или букв рекомендуется соединять выводы индикатора согласно таблице 2.
Таблица 2- Выводы индикатора.
Цифра | Номер вывода | Буква | Номер вывода | Буква | Номер вывода | Буква | Номер вывода |
1 | 2 или 4 или 10 | А | 4, 7, 11, 12 | Л | 4, 7, 11 | Ц | 2, 4, 5, 6 |
2 | 3, 6, 7, 11 | Б | 2, 3, 6, 8, 13 | М | 2, 4, 9, 11 | Ч | 4, 9, 12 |
3 | 3, 6, 11, 13 | В | 2, 3, 6, 8, 11, 13 | Н | 2, 4, 8, 12 | Ш | 2, 4, 6, 10 |
4 | 4, 9, 12 | Г | 2, 3 | О | 2, 3, 4, 6 | Щ | 2, 4, 5, 6, 10 |
5 | 3, 6, 9, 13 | Д | 1, 4, 5, 6, 7, 11 | П | 2, 3, 4 | Ы | 2, 4, 6, 13 |
6 | 2, 3, 6, 8, 13 | Е | 2, 3, 6, 8, 12 | Р | 2, 3, 8, 11 | Ь | 2, 6, 8, 13 |
7 | 3, 7, 11 | З | 3, 4, 6, 8, 12 | С | 2, 3, 6 | Э | 3, 4, 6, 12 |
8 | 3, 6, 7, 9, 10, 13 | Ж | 7, 9, 10, 11, 13 | Т | 3, 10 | Ю | 2, 4, 8, 11,12,13 |
9 | 3, 4, 6, 9, 12 | И | 2, 4, 7, 11 | У | 4, 6, 9, 12 | Я | 3, 4, 7, 9, 12 |
0 | 2, 3, 4, 6 | Й | 2, 3, 4, 7, 11 | Ф | 3, 9, 10, 11 | ||
К | 2, 8, 11, 13 | Х | 7, 9, 11, 13 |
Рассчитаем параметры схемы блока генератора тактовых импульсов.
Рисунок 7 – Принципиальная схема блока ГТИ.
В качестве генератора тактовых импульсов (ГТИ) используем микросхему КР580ГФ24.
ГТИ формирует:
- две фазы С1, С2 с положительными импульсами, сдвинутыми во времени, амплитудой 12 В и частотой 2 МГц;
- стробирующий сигнал состояния STB;
- тактовые сигналы С, синхронные с фазой С2, амплитудой напряжения уровня ТТЛ (0,4 В – 2,4 В).
- сигнал "Установка в исходное состояние" SR;
- сигнал "Готовность" RDY;
Для стабилизации тактовых сигналов опорной частоты ко входам XTAL1, XTAL2 генератора подключают кварцевый резонатор BP1, частота которого должна быть в 9 раз выше частоты выходных сигналов С1, С2.
Выберем кварцевый резонатор РВ-11 на 18 МГц, который имеет следующие параметры:
- диапазон частот, МГц 4,5 - 100
- добротность, 103 80 – 300
- емкостное отношение, 10-3 5 – 0,15
- динамическое сопротивление, Ом 5 – 75
- статическая емкость C0, пФ 3 – 6
- допустимое относительное отклонение частоты, 10-6 ±10
При частоте резонатора более 10 МГц необходимо последовательно в цепи резонатора включить конденсатор С1.
(1)
где fэ – эквивалентная частота последовательно соединенного конденсатора и резонатора, Гц;
f – собственная частота кварцевого резонатора;
Cк – динамическая емкость резонатора, Ф;
C0 = 3,3 пФ – статическая емкость резонатора;
МГц;
где fc = 2 МГц – частота тактовых импульсов.
Динамическую емкость резонатора можно определить как
где m = 5 ∙ 10-3 – емкостное отношение.
Ф;
За собственную частоту резонатора примем частоту отклонения от номинальной с учетом допустимого относительного отклонения частоты:
Гц;
Определим емкость конденсатора С1:
МкФ;
Выберем конденсатор С1: КМ-4 820 пФ.
Вход TANK предназначен для подключения колебательного контура, работающего на высших гармониках резонатора, для стабилизации тактовых сигналов опорной частоты. В нашей системе этот вход не используется, поэтому мы его заземляем.
Тактовые сигналы с выхода OSC, синхронные с сигналами опорной частоты, используются для одновременной синхронизации нескольких генераторов. В нашей системе эти сигналы не используются.
Стробирующий сигнал состояния STB формируется при наличии на входе SYN напряжения высокого уровня, поступающего с выхода микропроцессора в начале каждого машинного цикла. Сигнал STB используется для занесения информации состояния микропроцессора в системный контроллер для формирования сигналов управления.
Вход RDYIN предназначен для работы либо с медленнодействующими устройствами, либо для организации покомандного выполнения программы микропроцессором с частотой тактовых импульсов. Поэтому на этот вход подадим напряжение уровня логической единицы, подключив его к шине питания Uпит = +5 В через резистор R1.
Сопротивление R1 найдем из следующих соображений: верхним пределом сопротивления является значение, которое обеспечивает на входе микросхемы минимальное напряжение высокого уровня при максимальном входном токе.
(2)
где Uпит = 5 В – напряжение питания микросхемы;
U1вх = 2,6 В – минимальное входное напряжение высокого уровня для входа RDYIN;
I1вх = 0,1 мА – максимальный входной ток высокого уровня;
кОм.
Минимальное значение R1 определяется ограничением значения входного тока. Примем, что на этом сопротивлении падает напряжение, равное 0,5% от напряжения питания, тогда:
(3)
Ом.
Значение сопротивления R1 лежит в пределах от 250 Ом до 24 кОм. Примем R1 = 1 кОм.
Мощность рассеяние R1:
(4)
Вт
Выберем резистор R1: МЛТ-0,125 1кОм ± 5%.
Для осуществления системного сброса необходимо на вход RESIN подать сигнал низкого уровня, который появляется на выходе SR в виде сигнала высокого уровня. Длительность сигнала RESIN определяется наибольшим временем сброса микросхем, участвующих в работе системы. В нашей системе это ПККИ КР580ВВ79, сброс которого осуществляется не менее, чем за 6 тактов. Период одного такта микропроцессора:
мкс.
Для надежности число тактов сброса возьмем 10.
Тогда длительность сигнала RESIN:
мкс.
Система начального сброса (СНС) состоит из RC-цепочки (R2-C2), обеспечивающей заданную длительность сигнала RESIN, диода VD1, предназначенного для разряда конденсатора, и кнопочного выключателя SA1.
Допустимое обратное напряжение, прикладываемое к диоду должно быть больше напряжения питания +5 В. Необходимо также учесть, что время восстановления запирающих свойств диода tвосст должно быть меньше периода одного такта микропроцессора, т.е. tвосст<Tc.
Выберем диод 2Д509А, имеющий следующие параметры:
- максимальное обратное напряжение, Uобр max 50 В
- максимальный импульсный ток, Iим max 1,5 А
- средний ток, Iср 100 мА
- время восстановления запирающих свойств, tвосст 4 нс
Т.к. значения входного напряжения и тока высокого уровня для сигнала RESIN такие же, как и у сигнала RDYIN, то резистор R2 рассчитывается аналогично резистору R1. Выберем резистор R2: МЛТ-0,125 1 кОм ± 5%.
Падение напряжения на конденсаторе С2 изменяется во времени по следующему закону:
где Uс2(t) = 2,6 В – напряжение высокого уровня.
нФ;
Выберем конденсатор С2: КМ-4 6800 пФ.
В качестве кнопки сброса используем кнопку КН-1, которая имеет следующие параметры:
- сопротивление изоляции, МОм, не менее 1000
- электрическая прочность изоляции при нормальных
климатических условиях, В 1000
- сопротивление электрических контактов, Ом, не более 0,01
- коммутируемое напряжение, В 50
- коммутируемый ток, А 1,5
- износостойкость, циклов коммутации 15000
- масса, г 40
Рассчитаем параметры схемы блока центрального процессора.
В качестве микропроцессора используется микросхема КР580ВМ80А.
КР580ВМ80А – функционально законченный однокристальный параллельный 8-разрядный микропроцессор с фиксированной системой команд, применяется в качестве центрального процессора в устройствах обработки данных и управления.
Выходной сигнал WI формируется когда микропроцессор переходит в режим ожидания. Но т. к. в данной системе микропроцессор постоянно находится в режиме готовности, то этот вывод не используется.
Кроме того, наше устройство работает без прерываний, поэтому вывод INTE также не используется.
Сигналы HLD и HLDA позволяют организовать режим прямого доступа к памяти для любого внешнего устройства, формирующего сигналы HLD. Но т. к. в данной системе такие устройства отсутствуют, то вывод HLDA не используется, а вывод HLD – заземляется.
Линии шины данных D0-D7, а также линии управления: RC и TR подключаются к выводам системного контроллера: D0-D7, RC и TR, соответственно.
В качестве системного контроллера используется микросхема КР580ВК28. Системный контроллер формирует управляющие сигналы по сигналам состояния микропроцессора: при чтении из запоминающего устройства - RD, при записи в запоминающее устройство - WR, при чтении из устройства ввода/вывода - RDIO, при записи в устройство ввода/вывода - WRIO, при подтверждении запроса прерывания - INTA.
Кроме того, системный контроллер обеспечивает прием и передачу 8-разрядной информации между каналом данных микропроцессора по выводам D7-D0 и системным каналом по выводам DB7-DB0. Системный контроллер выдает на системный канал данных информацию в цикле записи по сигналу TR и принимает данные в цикле чтения по сигналу RC.
Рисунок 8 – Принципиальная схема блока ЦП.
По входному сигналу STB, поступающего с выхода ГТИ, системный контроллер фиксирует информацию состояния микропроцессора.
Асинхронный сигнал