Реконструкция электротехнической части фермы КРС на 200 голов

степенью защиты IР21 т.к. шкаф будет устанавливаться в электрощитовой а это помещение сухое, укомплектован вводным автоматом ВА51-33 и шестью автоматами ВА51-31 на 4 автомата будет включена силовая нагрузка на 1 осветительная сеть и 1 автомат останется в резерве на случай включения дополнительной нагрузки.

Расчет силовой сети животноводческого комплекса.


Таблица 23 - Выбранное оборудование животноводческого комплекса

Наименование оборудования Тип токоприемника Кол-во Рном Вт Iном А КjIп
ТСН-160

RA112М4

RA90L4

2

2

4

1,5

9

4

5,5

6,5

Вентилятор

Электрокалорифер

4А71В2У3

ТЕН-26

2

12

1,5

24

7

32

6,2

-


В таблице приведено оборудование 1 животноводческого комплекса, расчет второго аналогичен и поэтому его не приводим.

Силовая сеть животноводческого комплекса разбита на 3 группы, расчет производим аналогичным методом который использовался при расчете силовой сети молочного блока.

Моменты нагрузки на группах.

М1=Σ(Р·L)=1,5·10,5+12·10,5=141,7 кВт·м(3.212)

М2=1,5·79,5+12·79,5=1037 кВт·м

М3=4·25+1,5·25+4·25+1,5·25=275 кВт·м

Расчетное сечение кабелей на каждой группе.

S1=М1/С·ΔU=141,7/50·2,5=1,1 ммІ(3.213)

S2=1037/50·2,5=8,2 ммІ

S3=275/50·2,5=2,2 ммІ

Значение коэффициента С и ΔU аналогично молочному блоку.

Расчетные токи в группах.

Ток электротен вентиляционной установки.

I=Р/√3·U·cosφ=12/1,7·0,38·1=18,5 А(3.214)

где, Р - мощность тен вентиляционной установки.

U - номинальное напряжение

cosφ - коэффициент мощности, т.к. нагрузка активная то cosφ=1

Т.к. все токи известны то рабочий ток на группе определяем суммированием токов электроприемников подключенных к данной группе.

I1=4+18=22А(3.215)

I2=4+18=22А

I3=9+4+9+4=26А

На всех трех группах принимаем четырехжильный кабель марки АВВГ с сечением токоведушей жилы на 1 группе 2,5 ммІ, на 2 - 10 ммІ на 3 - 2,5 ммІ, выбранный кабель проверяем по нагреву длительным расчетным током. Допустимая токовая нагрузка на сечение 2,5 ммІ составляет Iдоп=28А на сечение 10 ммІ Iдоп=60А.

Проверка выбранного кабеля на группах.

Iдоп=28А≥I1расч=22А

Iдоп=80А≥I2расч=22А(3.216)

Iдоп=28А≥I3расч=26А

Окончательно принимаем выбранные раннее кабеля, т.к. они проходят по условию нагрева длительным расчетным током, способ прокладки кабель в трубе.

Выбор силового щита и аппаратуры защиты.

Ток на вводе в силовой щит.

Iв=Iс+Iо=70+39,8=109,8А(3.217)

где, Iс - ток силовой сети

Iо - ток осветительной сети.

Суммарный ток на вводе с учетом пускового тока самого мощного двигателя.

Imax=ΣIн+(Iн·КjIп)=35+35+4+4+(9·5,5+9·5,5)=216,8А(3.218)

Т.к. имеются два самых мощных двигателя с одинаковой мощностью, то определяем их суммарный пусковой ток.

Общие токи на группах.

I1max=28+(7·6,2)=71,4 А(3.219)

пусковой ток 1 группы аналогичен пусковому току 2 группы

I3max=4+4+(9·5,5+9·5,5)=107А(3.220)

Предварительно выбираем распределительный шкаф серии ПР8501 с автоматом на вводе ВА51-33 и 4 атоматическими выключателями серии ВА51-31 на отходящих линиях степень защиты IР21, т.к. помещение в месте установки щита сухое номер схемы 051.

Проверка выбранных автоматов по условиям (на отходящих группах принят автомат с Iн=50А Iотс=175А и Iн.р.=40А, на вводе с Iн=160А Iотс=480А и Iн.р.=150А)

При проверке автоматов на группах будем учитывать самую мощную группу, их вышло 2, т.к. они имеют одинаковую нагрузку, то в расчет принимаем одну из них.

Uн.а.=500В≥Uн.у.=380В

Iн.а=50А≥Iрасч=35А

Iн.р=40А≥Кн.р.·Iрасч=1,1·35=38,5А(3.221)

Iотс=175А≥Кн.э.·Imax=1,25·71,4=89,2А

Все условия выполняются значит окончательно на группах принимаем выбранный ранее автоматический выключатель.

Проверка выбранного автоматического выключателя на вводе.

Uн.а.=500В≥Uн.у.=380В

Iн.а.=160А≥Iрасч=135,8А

Iн.р.=150А≥Кн.р.·Iрасч=1,1·135,8=149,3А(3.222)

Iотс.=480А≥Кн.э.·Imax=1,25·216,8=271А

Все условия выполняются значит принимаем выбранный ранее на вводе автоматический выключатель серии ВА51-33 а также окончательно принимаем силовой щит серии ПР8501 с автоматом на вводе ВА51-33 и с 4 автоматами на отходящих группах серии ВА51-31.

Таблица 24 - Характеристика автоматических выключателей силового щита

Тип автомата Номинальный ток выключателя, А Уставка мгновенного срабатывания электромагнитного расцепителя, А Номинальный ток расцепителя, А
ВА51-31 50 175 40
ВА51-33 160 480 150

Установленная мощность всего комплекса.

Руст=Рж+Рм=105+35=140 кВт (3.223)

где, Рж - суммарная мощность обоих животноводческих комплексов.

Рм - мощность молочного блока.

Мощность молочного блока.

Рм=Рс+Ро=32,5+2,5=35 кВт (3.224)

где, Рс - мощность силовой сети

Ро - мощность осветительной сети

Рс=ΣР=8+2,2+9+1,2+3,4+8+0,74=32,5 кВт(3.225)

где, ΣР - сумма мощностей силовой цепи

Мощность осветительной сети из проведенных ранее расчетах Ро=2,5 кВт

Мощность 1 животноводческого комплекса.

Рж=Рс+Ро=37+15,5=52,5 кВт(3.226)

Рс=1,5+1,5+4+4+1,5+1,5+24=37 кВт

Ро=15,5 кВт

Мощность второго животноводческого комплекса аналогична.

Составление графиков нагрузки.

Графики нагрузки составляются для того чтобы наглядно иметь представление о пиках нагрузки, а также чтобы подсчитать потребление и стоимость годовой потребленной электроэнергии. При составлении графиков нагрузок будет учитываться весь животноводческий комплекс включая молочный блок. Графики нагрузки будут составляться для летнего и зимнего периодов.

Для летнего периода будем учитывать следующие условия: вентиляция в летний период осуществляется за счет естественного проветривания и поэтому расход энергии на вентилятор и калорифер будет равняться нулю, т.к. в летнее время коровы пасутся на пастбищах соотвественното уборка навоза будет производиться 1 раз в сутки. Для составления графиков нагрузок заносим время работы технологического оборудования в таблицу.


Таблица 25 - Интервалы и время работы технологического оборудования в летний период

Марка

оборудования.

Установленная

мощность, кВт

Время

работы

Интервалы времени работы
ТСН-160 22 0,6 с 8 до 8.36
АДМ-8 8 4,2 с 7 до 9.06 с 19 до 21.06
ТО2 8 6,5 с 7.30 до 10.55 с 19.30 до 22.55
МХУ-8С 6,8 6,5 с 7.30 до 10.55 с 19.30 до 22.55

Освещение в летнее время почти не используется за исключением освещения во время вечернего доения и дежурного освещения. Суммарная мощность дежурного освещения Рд=1,6 кВт. Также при составлении графиков нагрузки будем считать, что в дневное время помимо производственной нагрузки включается дополнительная нагрузка затрачиваемая на бытовые нужды которая примерно составляет порядка 5 кВт. Т.к. молоко реализуется предприятием в дневное время, а доение происходит утром и вечером то будем считать, что в ночное время будет помимо освещения включена холодильная машина с интервалом работы 25 минут в час.

В зимнее время интервалы работы технологического оборудования аналогично летнему периоду за исключением навозоуборочных транспортеров, работа которых составляет 4 раза в сутки. Также в зимнее время приточный воздух с улицы подается вентилятором на калорифер где он прогревается и затем подается в верхнею зону помещений, т.к. из проведенных ранее расчетах требуемая подача воздуха равнялась 12000 мі, а подача воздуха выбранных вентиляторов в сумме равняется 12000 мі, то будем считать что вентиляционная система в зимнее время будет постоянно работать.


Таблица 26 - Интервалы и время работы технологического оборудования в зимний период

Марка

оборудования

Установленная

мощность, кВт

Время

работы, ч

Интервалы времени работы
ТСН-160 22 1,2

с 8 до 8.18: с 11 до 11.18

с 16 до 16.18: с 20 до 20.18

АДМ-8 8 4,2 с 7 до 9.06: с 19 до 22.06
ТО2 8 6,5 с 7.30 до 10.55: с 19.30 до 22.55
МХУ-8С 6,8 6,5 с 7.30 до 10.55: с 19.30 до 22.55

Также сводим в таблицу время работы освещения в летний и зимний период.


Таблица 27 - Интервалы и время работы осветительной сети

Время года.

Установленная

мощность осветительной сети

Время работы, ч

Интервалы времени

работы осветительной сети.

Летнее 18 1,1 с 21.00 до 22.10
Зимнее 18 7,15 с 7.00 до 8.30: с 16.30 до 22.15

Дежурное освещение в летний и зимний период включено постоянно и его мощность составляет 1,6 кВт. Графики нагрузки в зимний и летний период приведены ниже.

4. Годовое потребление электроэнергии для технологического оборудования


Wгод=Р·((t·165)+(t·200))(4.1)


где, Р - номинальная мощность установки, кВт

t - время работы установки,

165-количество летних дней

200-количество зимних дней.

Родовое потребление электроэнергии для навозоуборочного транспортера.

Wгод=22·((0,6·165)+(1,2·200))=7458 кВт·ч(4.2)

Родовое потребление энергии доильной установкой.

Wгод=8·((4,2·165)+(4,2·200))=12264 кВт·ч(4.3)

Годовое потребление электроэнергии танком охладителем.

Wгод=8·((6,5·165)+(6,5·200))=18980 кВт·ч

Годовое потребление электроэнергии холодильной установкой.

Wгод=6,8·((10,2·165)+(10,2·200))=25316,4 кВт·ч(4.4)

Определяем годовое потребление электроэнергии на вентиляцию воздуха.

Wгод=54·(24·200)=259200 кВт·ч(4.5)

Годовое потребление электроэнергии на освещение.

Потребление электроэнергии на дежурное освещение.

Wгод=1,6·(24·365)=14016 кВт·ч(4.6)

Годовое потребление электроэнергии на рабочее освещение.

Wгод=18·((1,1·165)+(7,15·165))=29007 кВт·ч(4.7)

Годовое потребление на различные вспомагательные нужды.

Wгод=5·(8·264)=10560 кВт·ч(4.8)

где, 264 - среднее количество рабочих дней в году.

Общее потребление электроэнергии.

Wобщ=ΣРWгод=7458+12264+18980+25316,4+259200+14016+29007+10560=376801 кВт·ч (4.9)

Стоимость потребленной электроэнергии.

СтW=Wобщ·Ц=376801·1,3=489841,3 руб(4.10)

где, Ц - цена одного кВт·ч

Выбор Т.П. расчет наружных сетей.

Расчет перспективных нагрузок.

Для проектирования подстанции необходимо знать нагрузки. Расчетные нагрузки линий 10 кВ и трансформаторных подстанций 10/0,4 определяется суммированием максимальных нагрузок на вводе к потребителям с учетом коэффициента одновременности.


Таблица 28 - Установленная мощность потребителей

Наименование потребителя Установленная мощность, кВт Коэффициент одновременности
Уличное освещение 12 1
Гараж 15 0,6
Вентсанпропускник 10 0,8
Вентпункт 4,7 0,8
Артскважина с насосной 16,5 1
Резервная артскважина 2,7 0,3
Родильное отделение 50 0,9
Животноводческий комплекс N1 52,7 0,7
Животноводческий комплекс N2 52,7 0,7
Доильное отделение 35 0,8
Котельная 30 1

5. Установленная мощность потребителей с учетом коэффициента одновременности в дневной максимум


Р=Руст·Ко·Кд(5.1)


где, Руст - установленная мощность потребителя, кВт

Ко - коэффициент одновременности

Кд - коэффициент дневного максимума. (Кд=0,8 стр.67 (л-1))

Мощность гаража

Рг=15·0,6·0,8=7,2 кВт

Мощность вентсанпропускника

Рв=10·0,8·0,8=6,4 кВт

Мощность вентпункта

Рве=4,7·0,8·0,8=3 кВт

Мощность артскважины

Ра=16,5·1·0,8=13,2 кВт

Мощность резервной артскважины

Рра=2,7·0,3·0,8=0,6 кВт

Мощность родильного отделения

Рр=50·0,9·0,8=36 кВт

Мощность животноводческого комплекса N1

Рж=52,5·0,7·0.8=37 кВт

Мощность животноводческого комплекса N2

Рж2=52,5·0,7·0,8=37 кВт

Мощность молочного блока

Рм=35·0,8·0,8=22,4 кВт

Мощность котельной.

Рк=30·0,9·0,8=21,6 кВт

Суммарная нагрузка в дневной максимум.

Рд=ΣР=7,2+6,4+3+13,2+0,6+36+37+37+22,4+21,6=184 кВт (5.2)

где, ΣР - сумма мощностей

Полная мощность в дневной максимум

S=Рд/cosφ=184/0,8=230 кВа(5.3)

Определяем активную мощность потребителей в вечерний максимум.


Рв=Руст·Ко·Кв (5.4)

где, Кв - коэффициент вечернего максимума Кв=0,7

Уличное освещение

Ру=12·1·0,7=8,4 кВт

Мощность арсткважины

Ра=16,5·1·0,7=11,5 кВт

Мощность резервной артскважины

Рра=2,7·0,3·0,8=0,6 кВт

Мощность родильного отделения

Рр=50·0,9·0,7=31,5 кВт

Мощность животноводческого комплекса N1

Рж1=52,5·0,7·0,7=32,4 кВт

Мощность животноводческого комплекса N2

Рж2=52,5·0,7·0,7=32,4 кВт

Мощность молочного блока

Рм=35·0,8·0,7=19,6 кВт

Мощность котельной

Рк=30·0,9·0,7=18,9 кВт

Суммарная нагрузка в вечерний максимум.

Рв=8,4+11,5+0,6+31,5+32,4+32,4+19,6+18,9=145,3 кВт

Полная вечерняя нагрузка.

Sв=Рв/cosφ=145,3/0,8=181,6 кВа(5.5)

Силовой трансформатор выбираем с учетом максимальной нагрузки потребителя, максимальная нагрузка вышла в дневной максимум и составила 230 кВа Рд=230 кВа>Рв=181,6 кВа и поэтому принимаем силовой трансформатор с учетом дневного максимума.

Трансформатор выбираем согласно соотношению.


Sн≥Sрасч(5.6)

где, Sн - номинальная мощность трансформатора, кВа

Sрасч - расчетная мощность, кВа

Выбираем силовой трансформатор ТМ-250 с Sн=250 кВа

Sн=250 кВа≥Sрасч=230 кВа

условие выполняется значит трансформатор выбран верно.


Таблица 29 - Технические характеристики силового трансформатора

Тип


Sн, кВа Напряжение, кВ

Схема и группа

соединения

обмоток

Потери, Вт

Uк.з %

от Uн

Iх.х.

% от



ВН НН

ХХ

при Uн

КЗ при Iн

ТМ-250 250 10 0,4 0,23 У/Ун-0 730 2650 4,5 3,85

Расчет линии 10 кВ

Электрический расчет ВЛ-10 кВ производится с целью выбора марки и сечения провода. Расчет производим по экономической плотности тока.

Максимальный ток участка в дневной и вечерний максимум.

Iд=Sд/√3·Uн=230/1,73·10=13.2А(5.7)

Iв=Sв/√3·Uн=181,6/1,73·10=10,4А(5.8)

где, Uн - номинальное напряжение с высокой стороны.

Провод выбирают по наибольшему максимуму. Экономическую плотность тока определяют по таблице 23.4 (л-7) в зависимости от времени использывания максимальной мощности выбираем jэ=1,1

Расчетное сечение.

Fэ=Imax/jэ=13,2/1,1=12ммІ(5.9)

где, Imax - максимальный ток на вводе.

Принимаем сечение провода согласно 3 климатическому району которая согласно ПУЭ для ВЛ-10кВ должно быть не менее 50 ммІ при наличии стальной жилы и 70 ммІ без стальной жилы, принимаем провод АС-50 с Iдоп=210 А: Rо=0,6Ом/км, Xо=0,38Ом/км

Выбранный провод проверяем по условию нагрева длительным расчетным током. Iдоп=210А≥Iрасч=13,2А(5.10)

Условие выполняется значит провод не будет нагреваться.

Определяем потери напряжения в линии.

ΔUрасч=(Р·Ro+Q·Xо)l/Uн=(184·0,6+161,9·0,38)10/10=171В(5.11)

где, Р - активная мощность, кВт

Rо - активное сопротивление линии, Ом/км

Xо - реактивное сопротивление линии, Ом/км

l - длина линии 10 кВ

Uн - номинальное напряжение, кВ

Определяем реактивную мощность по формуле приведенной ниже.

Q=Р·tgφ=184·0,88=161,9 кВар(5.12)

где, tgφ - коэффициент реактивной мощности

tgφ=sinφ/cosφ=0,66/0,75=0,88

sinφ=0,66 стр.56 (л-7)

Потеря напряжения в %

ΔU%расч=ΔUрасч/Uн·100%=171/10000=0,1%(5.13)

Расчет линии 0,4 кВ

Расчет производим методом экономических интервалов начиная расчет с самого удаленного участка.

Расчет производится по следующим формулам.

Мощность на участке


Руч=ΣР·Ко(5.14)


где, ΣР - сумма мощностей участка

Ко - коэффициент одновременности зависящий от числа потребителей.

Полная мощность участка


Sуч=Руч/cosφ(5.15)

где, cosφ - коэффициент мощности

Эквивалентная мощность.


Sэкв=Sуч·Кд(5.16)


где, Кд - коэффициент динамики, Кд=0,7 стр.56 (л-7)

Расчет мощностей на участках

От подстанции отходит 3 питающих линий 0,4 кВ, расчет 1 отходящей линии.

Участок 1-2

Р1-2=Р2=4,7 кВт

Sуч=4,7/0,8=5,8 кВа

Sэкв=5,8·0,7=4,1 кВа

Участок 0-1

Руч=(Р1+Р2)·Ко=(10+4,7)·0,9=13,2 кВт

Sуч=13,2/0,8=16,5 кВа

Sэкв=16,5·0,7=11,5 кВа

Участок 4-7

Р4-7=Р7=30 кВт

Sуч=30/0,8=37,5 кВа

Sэкв=37,5·0,7=26,2 кВа

Участок 5-6

Р5-6=Р6=2,7 кВт

Sуч=2,7/0,8=3,3 кВа

Sэкв=3,3·0,7=2,3 кВа

Участок 4-5

Р4-5=(Р5-6+Р6)·Ко=(2,7+16,5)·0,9=17,2 кВт

Sуч=17,2/0,8=21,6 кВа

Sэкв=21,6·0,7=15,1 кВа

Участок 3-4

Р3-4=(Р4-5+Р4-7)·Ко=(17,2+30)·0,9=42,4 кВт

Sуч=42,4/0,8=53,1 кВа

Sэкв=53,1·0,7=37,1 кВа

Участок 0-3

Р0-3=(Р3+Р3-4)·Ко=(15+42,4)·0,9=51,6 кВт

Sуч=51,6/0,8=64,5 кВа

Sэкв=64,5·0,7=45,2 кВа

Участок А-0

РА-0=(Р0-1+Р0-3)·Ко=(13,2+51,6)·0,9=58,3 кВт

Sуч=58,3/0,8=72,9 кВа

Sэкв=72,9·0,7=51 кВа

Провод выбирается по эквивалентной мощности с учетом климатического района, выбираем провод А-35 который может выдерживать нагрузку до 1035 кВа и ΔUтабл=0,876, наибольшая эквивалентная мощность вышла на участке А-0 и составила 51 кВа

Sпров=1035кВа≥Sэкв=51кВа

Согласно этому условию выбранный провод выдерживает расчетную нагрузку и окончательно принимаем именно его.

Проверка выбранного провода на потери напряжения, для этого находим потери напряжения на всех участках.


Uуч=Uтабл·Sуч·Lуч·10(5.17)


где, Uтабл - табличные потери напряжения выбираются в зависимости от марки провода (Uтабл=0,876 стр.36 (л-7)

Lуч - длина участка, м

U1-2=0,876·5,8·140·10=0,6%

U0-1=0,876·16,5·85·10=1,2%

U4-7=0,876·37,5·35·10=1,1%

U5-6=0,876·3,3·20·10=0,02%

U4-5=0,876·21,6·15·10=0,2%

U3-4=0,876·53,1·45·10=2%

U0-3=0,876·64,5·40·10=2,2%

UА-0=0,876·72,9·3·10=0,19%

Производим суммирование потерь напряжения на участке А-2 и А-7

UА-2=U1-2+U0-1+UА-0=0,6+1,2+0,19=1,9%(5.18)

UА-7=UА-0+U4-7+U5-6+U4-5+U3-4+U0-3=0,19+1,1+0,02+0,2+2+2,2=5,7%

Согласно ПУЭ допустимая потеря напряжения на ВЛ-0,4кВ составляет 6% наибольшая потеря напряжения вышла на участке А-7 и составила 5,7% что удовлетворяет требованию ПУЭ и поэтому окончательно принимаем на всех участках провод марки А-35

Расчет 2 отходящей линии.

2 линия питает молочный блок и 1 животноводческий комплекс.

Участок 8-9

Р8-9=Р9=35 кВт

S8-9=35/0,8=43,7 кВа

Sэкв=43,7·0,7=30,6 кВа

Участок А-8

РА-8=(Р8-9+Р8)·Ко=(35+66,2)·0,9=91,8 кВт

SА-8=91,8/0,8=113,8 кВа

Sэкв=113,8·0,7=79,6 кВа

Для второй отходящей линии принимаем провод А-35

Sпров=1035кВа>Sэкв=79,6кВа

условие выполняется значит провод выбран верно.

Проверка выбранного провода на потери напряжения.

U8-9=0,876·43,7·35·10=1,3%

UА-8=0,876·113,8·45·10=4,4%

Суммарная потеря напряжения на участках

UА-9=U8-9+UА-8=1,3+4,4=5,7%

Полученный процент потерь удовлетворяет требованиям ПУЭ и выбранный ранее провод принимаем окончательно.

Расчет 3 отходящей линии.

Третья линия питает родильное отделение и 2 животноводческий комплекс.

Участок 10-11

Р10-11=Р11=50 кВт

Sуч=50/0,8=62,5 кВа

Sэкв=62,5·0,7=43,7 кВа

Участок А-10

РА-10=(Р10-11+Р10)·Ко=(50+66,2)·0,9=104,5 кВт

Sуч=104,5/0,8=130,7 кВа

Sэкв=130,7·0.7=91,5 кВа

Т.к. протяженность линии и расчетная мощность вышла большая то принимаем провод марки А-70 с Uтабл=0,387

Потери напряжения на участках.

U10-11=0,387·62,5·30·10=0,72%

UА-10=0,387·130,7·90=4,5%

Потери напряжения на всей линии.

UА-11=U10-11+UА-10=0,72+4,5=5,2%

Отклонение напряжения находится в допустимых пределах значит окончательно принимаем выбранный ранее провод.

Расчет токов коротких замыканий.

Расчет производим методом именованных величин, этим методом пользуются при расчетах токов коротких замыканий (к.з.) с одной ступенью напряжения, а также в сетях напряжением 380/220 В. В последнем случае учитывают: активное и реактивное сопротивление элементов схемы, сопротивление контактных поверхностей коммутационных аппаратов, сопротивление основных элементов сети - силовых трансформаторов, линий электропередачи. Напряжение, подведенное к силовому трансформатору, считают неизменным и равным номинальному. Расчетная схема электроснабжения и схема замещения будет приведена ниже.

Сопротивление силового трансформатора 10/0,4 кВ

Zт=Uк.з.·UІном/(100·Sном.т.)=4,5·0,4І·10і/(100·250)=29 Ом(5.19)

где, Uк.з. - напряжение короткого замыкания, в предыдущих расчетах был выбран силовой трансформатор с Uк.з=4,5%

Uном - номинальное напряжение с низкой стороны, кВ

Sном - номинальная мощность силового трансформатора, кВа

Трехфазный ток к.з. в точке К1

Iк1=Uном/(√3·(Zт+Zа))=400/(1,73·(29+15)=4,71 кА(5.20)

где, Zа - сопротивление контактных поверхностей коммутационных аппаратов принимают равным 15 Ом стр.34 (л-7)

Находим сопротивление первой отходящей линии ВЛ N1

Индуктивное сопротивление линии

Хл=Хо·l=0,35·380=133 Ом(5.22)

где, Хо - индуктивное сопротивление провода, для провода марки А-35 Хо=0,35 Ом/м

l - длина линии, м

Активное сопротивление линии

Rл=Rо·l=0,85·380=323 Ом(5.23)

где, Rо - активное сопротивление провода, для провода марки А-35 Rо=0,59 Ом/м

Результирующее сопротивление

Zрез=√(Хл)І+(Rл)І=√(133)І+(323)І=349 Ом(5.24)

Сопротивление второй отходящей линии, длина линии l=80м

Индуктивное сопротивление линии

Хл=0,35·80=28 Ом

Активное сопротивление линии

Rл=0,85·80=68 Ом

Результирующее сопротивление.

Zрез=√(28)І+(68)І=73,5 Ом

Сопротивление третьей отходящей линии, длина линии l=120м индуктивное и активное сопротивления выбранного провода Хо=0,35 Ом/м Rо=0,59 Ом/м стр 40 (л-7)

Индуктивное сопротивление линии.

Хл=0,35·120=42 Ом

Активное сопротивление линии

Rл=0,59·120=70,8 Ом

Результирующее сопротивление

Zрез=√(42)І+(70,8)І=82,3 Ом

Определяем токи коротких замыканий в точке К1

Трехфазный ток к.з. в точке К1

Iік2=Uном/(√3·(Zт+Zл))=400/(1,73·(29+349))=0,61 кА(5.25)

Двухфазный ток к.з.

IІк2=0,87·Iік2=0,87·0,61=0,53 кА(5.26)

Однофазный ток к.з.

Iк2=Uф/√[(2·(Rл)І)+(2·(Хл)І)]+1/3Zтр.=230/√[(2·(323)І)+(2·(133)І)]+104=0,38 кА

где, Zтр. - сопротивление трансформатора приведенное к напряжению 400 В при однофазном к.з.

Расчет токов коротких замыканий в точке К3

Трехфазный ток к.з.

Iік3=400/(1,73·(29+73,5))=2,2 кА

Двухфазный ток к.з.

IІк3=0,87·2,2=1,9 кА

Однофазный ток короткого замыкания

Iк3=230/√[(2·(68)І)+(2·(28)І)]+104=1,1 кА

Расчет токов коротких замыканий в точке К4

Трехфазный ток к.з.

Iік.з.=400/(1,73·(29+82,3))=2 кА

Двухфазный ток к.з.

IІк.з.=0,87·2=1,7 кА

Однофазный ток к.з.

Iк4=230/√[(2·(70,8)І)+(2·(42)І)]+104=1 кА

Выбор оборудования на питающую подстанцию

Выбор автоматических выключателей на отходящих линиях.

Автоматические выключатели предназначены для автоматического отключения электрических цепей при коротких замыканий или ненормальных режимах работы, а также для нечастых оперативных включений и отключений. Автоматические выключатели выбираются по следующим условиям.

Uн.а≥Uн.у.


Iн.а≥Iн.у.(5.28)

Iн.р.≥Кн.т.·Iраб

Iпред.отк.≥Iк.з.


где, Uн.а. - номинальное напряжение автомата

Uн.у. - номинальное напряжение установки

Iн.а. - номинальный ток автомата

Iн.у. - номинальный ток установки

Iраб - номинальный или рабочий ток установки.

Кн.т. - коэффициент надежности расцепителя.

Iпред.окл. - максимальный ток короткого замыкания который автомат может отключить без повреждения контактной системы

Iк.з. - максимально возможный ток короткого замыкания в месте установки автомата.

Выбор автомата для первой отходящей линии.

Рабочий ток линии

Iраб=S/√3·Uн=65,2/1,73·0.4=94,4 А(5.29)

где, S - полная мощность первой линии, из предыдущих расчетов Sл=65,2 кВа.

Определяем рабочий ток с учетом коэффициента теплового расцепителя

Кн.т.·Iраб=1,1·94,4=103,8(5.30)

Принимаем для первой питающей линии автомат серии А3710Б с Iн=160 А Iн.р.=120 А и Iпред.отк=32 кА

Uн.а.=440В≥Uн.у.=380В

Iн.а.=160А≥Iраб=94,4А(5.31)

Iпред.откл=32А≥Iк.з.=0,61кА

Максимальный ток короткого замыкания взят из предыдущих расчетах.

Все условия выполняются, значит автомат выбран верно.

Выбор автомата на второй отходящей линии.

Рабочий ток линии.

Iраб=Sл/√3·Uн=92,8/1,73·0,4=134,6 А(5.32)

Расчетный ток теплового расцепителя

Кн.р.·Iраб=1,1·134,6=148,2 А(5.33)

Для второй линии принимаем автомат серии А3134 с Iн=200А Iн.р.=150А и Iпред.отк.=38А

Выбор автомата на второй отходящей линии.

Рабочий ток линии

Iраб=114,1/1,73·0,4=165,3 А(5.34)

Расчетный ток теплового расцепителя.

Кн.р.·Iраб=1,1·165.3=181,8(5.35)

Для третьей линии принимаем автомат серии А3134 с Iн=200А Iн.р.=200 А и Iпред.окл=38 А

Таблица 30 - Технические данные выбранных автоматических выключателей

Тип ыключателя Номинальный ток выключателя, А Номинальный ток расцепителя. А Предельный ток отключения при напряжении 380В, А
А3710Б 160 120 32
А3134 200 150 38
А3134 200 200 38

Выбор трансформатора тока

Выбор трансформатора тока сводится к сравнению тока в первичной цепи к току в форсированном режиме.

Номинальный первичный ток.

Iн1=Sн.т./√3·Uн=250/1,73·0,4=362,3 А(5.31)

где, Sн.т. - номинальная мощность выбранного трансформатора

Uн - номинальное напряжение с низкой стороны.

Ток в цепи в форсированном режиме.

Iраб.фор.=1,2·362,3=434,7 А(5.32)

Выбираем трансформатор тока серии ТК-20 у которого Uном=660В Iном=400А стр 112 (л-6)

I1=500А≥Iраб.фор.=434,7А(5.33)

У выбранного трансформатора тока выполняется условие по первичному току значит окончательно принимаем именно его.

Выбор рубильника

Рубильник предназначен для нечастых включений и отключений вручную электроустановок до 660В. Выбор рубильника сводится к сравнению рабочего тока электроустановки к номинальному току на которое рассчитана его контактная система. Из предыдущих расчетах Iраб=362,3А

Принимаем рубильник серии Р34 с Iн=400 А стр.112 (л-7)

Iн.руб=400А≥Iраб=362,3А(5.34)

Условие выполняется значит рубильник выбран верно.

Выбор оборудования с высокой стороны.

Выбор предохранителя с высокой стороны.

Высоковольтные предохранители в схемах электроснабжения

потребителей применяют в основном для защиты силовых трансформаторов от токов коротких замыканий.

Ток номинальный трансформатора с высокой стороны.

Iн.тр.=Sн.тр./√3·Uн=250/1,73·10=14,4 А(5.35)

где, Sн.тр. - номинальная мощность силового трансформатора

Uн - номинальное напряжение с высокой стороны

По номинальному току трансформатора выбираем плавкую вставку, обеспечивающую отстройку от бросков намагничивающего тока трансформатора.

Iв=(2…3)Iн.тр.=2,5·14,4=36 А(5.36)

Выбираем предохранитель ПК-10/40 с плавкой вставкой на 40 А стр45 (л-6)

Выбор разъединителя

Разъединитель предназначен для включения и отключения электрических цепей под напряжением но без нагрузки а также он создает видимый разрыв. Выбор разъединителя производится по следующим условиям.


Uн.р.≥Uн.у(5.37)

Iн.р.≥Iраб


где, Uн.р. - номинальное напряжение разъединителя

Uн.у - номинальное напряжение установки

Iн.р. - ток номинальный разъединителя

Iраб - максимальный рабочий ток.

Из предыдущих расчетах Iраб=13,2 А, номинальное напряжение с высокой стороны Uн.у.=10 кВ

Принимаем разъединитель РЛН-10/200 с Iн.р.=200А и Uн.р.=10 кВ

Проверка выбранного разъединителя по условиям.

Uн.р.=10кВ≥Uн.у.=10кВ

Iн.р.=200А≥Iраб=13,2А

Все условия выполняются значит разъединитель выбран верно.


Таблица 31 - Данные разъединителя заносим в таблицу

Тип разъединителя Номинальный ток разъединителя, А Амплитуда предельного сквозного тока короткого замыкания, кА Масса, кг
РЛН-10/200 200 15 20

Выбор разрядников с высокой и низкой стороны

Защиту элементов электроустановки от перенапряжений осуществляют при помощи вентильных разрядников. С высокой стороны выбираем разрядник типа РВО-10 разрядник вентильный облегченной конструкции, наибольшее допустимое напряжение U=12,7 кВ, пробивное напряжение при частоте 50 Гц не менее 26 кВ. Со стороны 0,4 кВ принимаем вентильный разрядник типа РВН-0,5 стр.65 (л-7).

Расчет заземляющих устройств

Подстанция питающая ферму расположена в 3 климатической зоне, от трансформаторной подстанции отходят 3 воздушные линии (В.Л.) на которых в соответствии с ПУЭ намечено выполнить 6 повторных заземлений нулевого провода. Удельное сопротивление грунта ρ0=120 Ом. Заземляющий контур в виде прямоугольного четырехугольника выполняют путем заложения в грунт вертикальных стальных стержней длиной 5 метров и диаметром 12 мм, соединенных между собой стальной полосой 40·4 мм. Глубина заложения стержней 0,8 м полосы 0,9 м.

Расчетное сопротивление грунта стержней заземлителей.

Ррасч=Кс·К1·ρ0=1,15·1,1·120=152 Ом·м(5.38)

где, Кс - коэффициент сезонности принимают в зависимости от климатической зоны, Кс=1,15 табл.27.1 (л-8)

К1 - коэффициент учитывающий состояние грунта при измерении К1=1,1 таблица 27.3 (л-8)

Сопротивление вертикального заземлителя из круглой стали.

Rв=0,366·ρрасч(2·l/lgd+0,5lg·(4hср+l/4hср-l))/l=0,366·152(2·5/lg0,012+0,5lg·(4·3,3+5/

/4·3,3-5))/5=31,2 Ом (5.39)

где, d - диаметр стержня

l - длина электрода

h - глубина заложения, равная расстоянию от поверхности земли до середины трубы или стержня.

Сопротивление повторного заземлителя Rп.з. не должно превышать 30 Ом при ρ=100 Ом·м и ниже. При ρ>100 Ом·м допускают применять

Rп.з.=30ρ/100=30·152/100=45 Ом(5.40)

Для повторного заземления принимаем один стержень длиной 5 м и диаметром 12 мм, сопротивление которого 34,5Ом<45Ом

Общее сопротивление всех 6 повторных заземлителей.

rп.з.=Rп.з./n=31,2/6=5,2 Ом(5.41)

где, Rп.з. - сопротивление одного повторного заземления

n - число стержней

Расчетное сопротивление заземления в нейтрали трансформатора с учетом повторных заземлений.

rиск=rз·rп.з./(rп.з.-rз)=4·5,2/(5,2-4)=17,3 Ом(5.42)

где, rз - сопротивление заземлителей.

В соответствии с ПУЭ сопротивление заземляющего устройства при присоединении к нему электрооборудования напряжением до и выше 1000 В не должно быть более 10 Ом.

rиск=125/8=15,6 Ом(5.43)

Принимаем для расчета наименьшее из этих значений rиск=10 Ом

Определяем теоретическое число стержней.

nт=Rв/rиск=31,2/10=3,12(5.44)

Принимаем 4 стержня и располагаем их в грунте на расстоянии 5 м один от другого.

Длина полосы связи.

lr=а·n=5·4=20 м(5.45)

Сопротивление полосы связи.

Rп=0,366·ρрасч·lg[2lІ/(d·n)]/l=0,366·300·lg[2-20І/0,04·82]/20=24,2 Ом(5.46)

ρрасч=2,5·1·120=300 Ом таблица 27.2 и 27.9 (л-7). При n=4 а/l=5/5=1 ηв=0,69 и ηг=0,45.

Действительное число стержней.

nд=Rв·ηг[1/(rиск·ηг)-1/Rп]ηв=31,2·0,45[1/(10·0,45)-1/24,2]·0,69=3,5(5.47)

Принимаем для монтажа nт=nд=4 стержня и проводим проверочный расчет.

Действительное сопротивление искуственного заземления.

rиск=Rв·Rп/(Rп·n·ηв+Rв·ηп)=31,2·34,2/(21,2·4·0,69+31,2·0,45)=9,4Ом<10Ом (5.48)

Сопротивление заземляющего устройства с учетом повторных заземлений нулевого провода.

rрасч=rиск·rп.з./(rиск+rп.з.)=9,4·5,2/(9,4+5,2)=34,2(5.49)

Если же расчет выполнен без учета полосы связи то действительное число стержней.

nд=n/ηв=4/0,69=5,8(5.40)

Электрооборудование навозоуборочного транспортера работает в окружающей среде, параметры которой значительно отклоняются от установленных норм для электродвигателей и аппаратуры управления. К таким параметрам относят: влажность, загазованность, запыленность и резкие колебания температуры воздуха в течении суток. В животноводческом помещении где находится навозоуборочный транспортер наблюдается повышение влажности воздуха, концентрация углекислого газа, аммиака, сероводорода, при значительных колебаниях температуры. Совокупное действие этих факторов вызывает увлажнение и постепенное разрушение изоляции со снижением сопротивления и повышением утечки тока на корпус. Особенно вредно это воздействие на электродвигатель, когда он не работает и его обмотка не нагревается и не подсушивается или когда он работает малое число в сутки, что характерно для электродвигателей навозоуборочного транспортера.

Влажная, содержащая агрессивные газы воздушная среда стойлового помещения вызывает коррозию электрических контактов и конструктивных элементов электрических машин и аппаратов. Вследствие этого увеличивается переходное сопротивление контактов, повышается их нагрев, что способствует еще большей коррозии и следовательно, нарушению электрического контакта. Из-за коррозии ослабляется упругость пружин электрических пускателей, что служит причиной нарушения их работы. Коррозия крепежных деталей затрудняет разборку оборудования. Для увеличения срока службы электроаппаратуры навозоуборочного транспортера щит управления с пускозащитной аппаратурой выбирается со степенью защиты IР 54, провода и кабели для питания силовых и цепей управления прокладываются в трубах.

Навозоуборочный транспортер ТСН-160 имеет значительную протяженность доходящую до десятков метров имеет большое число рабочих деталей с движущимися трущимися поверхностями, трущиеся элементы подвержены износу, заклиниванию создавая тем самым аварийные режимы для приводных электродвигателей. Бывают случаи, когда движущиеся наружные части наклонных транспортеров примерзают к неподвижным элементам конструкции, и вследствие этого надо тщательно выбирать и настраивать защиту электродвигателей, в противном случае электродвигатели будут часто выходить из строя.

Исследования показали, что срок службы электрооборудования в условиях сельского хозяйства сокращается в несколько раз. Поэтому для навозоуборочного транспортера, который находится в помещении с повышенной влажностью целесообразно выбирать электродвигатели и аппаратуру управления сельскохозяйственного назначения (закрытые с химовлагостойкой изоляцией обмоток)


6. Безопасность жизнедеятельности на производстве


Многочисленные случаи травматизма, связанные с электрическим током, бывают вызваны различными причинами. Основные из них следующие: нарушение правил электробезопасности в охранной зоне линии электропередачи, а также при устранении неисправностей на подстанциях и в распределительных щитах, при эксплуатации передвижных машин на зернотоках и оборудования на животноводческих фермах, нарушение технологии монтажа и демонтажа электроустановок, замена электроламп под напряжением, использование неисправного инструмента и т.д.

Основные правила электробезопасности должны знать прежде всего электромонтеры, механизаторы, разнорабочие, а также представители других профессий, связанные с электричеством непосредственно или косвенно.

Животноводческая ферма крупно рогатого скота запитана от трансформаторной подстанции с глухозаземленной нейтралью. Сеть выполнена четурехпроводой.

Нулевой провод повторно заземляется в конце линии при вводе в здание. От опоры до распределительного щита прокладывается кабель.

Ферма относится к помещениям с особой опасностью поражения электрическим током, которые характеризуются наличием:

- токоведущих частей оборудования

- токоведущих полов

- токопроводящих стен и потолков

На ферме необходимо предусматривать повторное заземление нулевого провода при вводе в здание. Согласно правил устройства электроустановок (ПУЭ) металлические части всех станков и оборудования, способные оказаться под напряжением заземляются.

Мероприятия по производственной санитарии и технике безопасности.

Производственные помещения фермы должны удовлетворять требованием СНИП и санитарным нормам проектирования промышленных предприятий. Производственная санитария обеспечивает санитарно гигиенические условия труда, сохраняет условия частичной безопасности работ, сохраняет здоровье трудящихся на производстве способствует повышению производительности труда.

Помещение для обслуживающего персонала оборудуют отоплением и водопроводом. Отопление предусмотрено от котельной, которая находится недалеко от фермы.

Водоснабжение производится от водонапорной башни.

Гигиенические нормативы и параметры микроклимата определены ГОСТ 12.1005-88. Для обеспечения благоприятных условий работы нормированная освещенность ринята согласно СНИП-11-4-90 и отраслевым нормам. Из индивидуальных средств ащиты предусмотрены диэлектрические перчатки, диэлектрические калоши, диэлектрические коврики, а также инструмент с изолирующими ручками.

Анализ состояния производственного травматизма в совхозе.


Таблица 32

Годы Среднегодовая численность работников Количество пострадавших

Потеряно

Рабочих дней

Коэффициент частоты травматизма Коэффициент тяжести травматизма
2001 131 1 17 7,6 17
2002 111 2 42 18,1 21
2003 92 1 15 10,8 15

Защитные меры в электроустановках

Проектом предусмотрено, что все щиты: силовые, управления и осветительные размещены в специально отведенном месте. Для защиты людей от случайных прикосновений в момент включения электроустановок вся пускозащитная аппаратура применяется закрытого типа. Силовые шкафы запираются на замок.

Электрическая изоляция токоведущих частей электроустановок является важным фактором безопасности людей, поэтому периодически проводится контроль состояния изоляции.

На ферме применяется переносной электроинструмент и переносной источник освещения - светильник. Учитывая, то что помещения фермы с повышенной опасностью поражения электрическим током, при использовании переносного электрического инструмента предусмотрено пользования изолирующими защитными средствами (диэлектрический коврик, калоши и перчатки). Питание переносного электроинструмента осуществляется через гибкий кабель.

Инструменты подключаются к сети через штепсельную розетку с заземляющим контактом (штырьком). Устройство розетки имеет конструкцию исключающую ошибочное включение заземляющего контакта в гнездо имеющее напряжение.

Предусмотрено не реже одного раза в месяц проверка мегомметром изоляцию ручного электроинструмента, а также проверка отсутствия обрыва заземляющей жилы. Линия 0,4 кВ питающая ферму выполняется проводом одинакового сечения. В трехфазных четырехпроходных сетях до 1000В с глухозаземленной нейтралью применяется зануление с повторным заземлением.

Безопасность жизнедеятельности в чрезвычайных ситуациях

Атмосферное электричество проявляется в виде разрядов молний. Прямой удар молнии в здание может поражать не только людей и животных, но и вызвать пожары и взрывы, разрушение каменных и бетонных сооружений, расщеплять деревянные опоры воздушных линий и повреждать изоляцию.

Согласно инструкции РД 34.21.122-87 расположенные в сельской местности небольшие строения с неметаллической кровлей, принадлежащих к 3 категории подлежат защите от прямых ударов молний одним из упрошенных методов.

Согласно ПУЭ животноводческая ферма СПК «Садовод» находится на территории со среднегодовой продолжительностью гроз от 20 до 40 часов.

Ожидаемое количество поражений молний в год.

N=(В+3·hx)·(l+3·hx)·n/10=(21+3·6,64)·(75+3·6,64)·2,5/10=0,0097 ударов в год (6.1)

где, В - ширина защищаемого здания, В=21 м

l - длина здания, l=75м

hx - высота до крыши здания, hx=6,64 м

n - среднее число поражений молний 1 кмІ земной поверхности в год в месте расположения здания, n=2,5

Защита производится двойным стержневым молниеотводом, состоящим из двух стержневых молниеотводов одинаковой высоты, стоящих друг от друга на расстоянии L, высотой hx≤6,64 м. При L>hx высота зоны защиты hс в середине между молниеотводами.

hс=h0-(0,17+3·10·h)·(L-h)=17-(0,17+3·10·20)·(30-20)=9,3 м(6.2)

где, h0 - зона защиты молниеотвода, м

h0=0,85·h=0,85·20=17м(6.3)

где, h - высота молниеотвода, h=20м

Ширина зоны защиты 2rc на уровне земли в середине между молниеотводами.

2·rc=2r0(6.4)

Ширина зоны защиты 2rc,x на высоте hx в середине между молниеотводами при L>h

2·rc,x=2·r0·hc-hx/hc (6.5)

где, r0-половина ширины зоны защиты

r0=(1,1-0,002·h)·h=(1,1-0,002·20)·20=21,2 м (6.6)

Радиус зоны защиты торцевых областей на высоте hx

rx=(1,1-0,002·h)·(h-hx/0,85)=(1,1-0,002·20)·(20-6,64/0,85)=12,8 м(6.7)

2rcx=2·21,2·9,3-6,64/9,3=12,1 м

В данном дипломном проекте предложено внедрить в технологический процесс, навозоуборочный транспортер ТСН-160 производительностью 5 тонн в час.

Капитальные вложения на установку с учетом затрат на приобретение, транспортировку и монтаж составляет 190000 рублей.

Рассчитываем эксплуатационные затраты при внедрение ТСН-160.

ΣU=Uз.пл.+Uа.+Uт.р.+Uэл.эн.=8760+25300+17710+9695,4=61465 (8.1)

где, Uз.пл – затраты на заработную плату, руб/год

Uа – амортизационные отчисления, руб/год

Uт.р – затраты на тех.обслуживание и ТР, руб/год

Uэл.эн. – затраты на электрическую энергию, руб/год

Расчет заработной платы производится из учета того, что тарифная ставка рабочего на удалении навоза составляет 30 рублей за час.

Определяем суточные издержки на заработную плату при удаление навоза.

Uз.пл=Зпл.ч·t=30·3,6=108 руб/сут (8.2)

где, Зпл.ч – заработная плата за один час работы, руб/ч.

t - время уборки навоза в сутки, учитывая то что время также тратится на сгребание навоза в каналы принимаем в расчет это время и время работы навозоуборочного транспортера в сутки.

Определяем затраты на заработную плату при годовой уборки навоза.

Uз.пл=Uз.пл.удЧm=108·365=39420 руб/год (8.3)

где, m - количество дней в году.

Определяем амортизационные отчисления

Ua=БсЧа/100=230000·12,5/100=25300 руб/год(8.4)

где, а - норма амортизации

Определяем затраты на техобслуживание и ТР

Uтр=0,7ЧUa=0,7·25300=17710 руб/год(8.5)

Затраты на электроэнергию.

Uэл.эн.=Wгод·Ц=7458·1,3=9695,4 руб/год(8.6)

Wгод - годовое потребление электроэнергии, из проведенных ранее расчетах Wгод=7458 кВт·ч (8.7)

Ц - цена 1 кВт·ч

Подсчитываем годовую экономию сравнивая затраты на данную систему уборки навоза с гидравлической системой, сумма затрат при гидравлической уборке навоза составляет ΣUг=85740 рублей в год.

Доход от внедрения данной системы.

Чд=ΣUг-ΣUт=85740-61465=24275 руб/год

Эффективность от внедрения

Эв=Чд/ΣU·100=24275/61465·100=39,4 %(8.10)

Вышеприведенные данные показывают что внедрение данной системы уборки навоза экономически целесообразно по сравнению с гидравлической системой, которая значительно дороже и в процессе монтажа и в процессе эксплуатации, сравнивание выбранной системы с гидравлической связана с тем что в настоящие время эти две системы доминируют на фермах, остальные системы не получили такого широкого применения.

В данном дипломном проекте также предложено внедрить новую систему электроснабжения которая заменит старую систему. Находящееся в совхозе на данное время система устарела и была изношена вследствие этого увеличивались затраты на техническое содержание что вело к уменьшению рентабельности производства, не