Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si

alt="Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si" width="244" height="53" align="BOTTOM" border="0" />; (2.15),


где i, j - степени окисленности оксидов металла, для которых существуют наиболее достоверные термодинамические данные,

х - степень окисленности неизвестного оксида.

Наиболее достоверные термодинамические данные для никеля получены для оксида NiO:



Данные для оксида Ni2O3 получены расчетным путем: . Поскольку для гипотетического оксида NiO1,5 энергия Гиббса образования вдвое меньше, то . Таким образом, , , , i=1, j=1,5 и энергия Гиббса оксида NiOx:


; (2.16)


Подставляя (2.3.13) в (2.3.12) и полученное выражении для в (2.3.11), находим значение x, соответствующее максимальной степени окисленности никеля в оксиде, полученного окислением Ni2SiO4 на воздухе: х=1,903.

Из результатов расчета следует, что химическое сродство кремния к кислороду намного выше, чем у никеля. Вплоть до содержания кремния в γ - фазе - 10-40 моль единственной оксидной фазой (продуктов окисления сплава) является кремнезем. Окисление сплавов начинается при давлении кислорода большем чем 10-156 атм, поэтому сплавы будут окисляться кислородом воздуха при 250 С. Так как для образования NiO2 требуется давление кислорода в газовой фазе над сплавом большее, чем 9,48*1030, то при окислении сплавов кислородом воздуха NiO2 образовываться не будет. Окисления никеля завершится образованием фазы NiOx.


2.4 Расчет диаграммы состояния системы Ni-Si-H2O при 250С. Анализ химической устойчивости


Диаграммы рН-потенциал строят, зафиксировав активности компонентов, находящихся в растворе. В данной работе построены диаграммы рН-потенциал для системы Ni-Si-H2O при активностях ионов в растворе равных 1 , 10-3 , 10-6 . Они представлены соответственно на рис.2.3, 2.4, 2.5 Основные химические и электрохимические равновесия указаны в табл.2.6.

При построении диаграмм были использованы данные из табл.1.5 и табл.2.2-2.3. В качестве примера рассмотрим расчеты некоторых равновесий:

1) Электрохимическое равновесие 3:



рассчитывалось комбинацией следующих реакций:


а) ,

;

б) ,

В; Так как , (2.17)


то свободная энергия Гиббса электрохимической реакции (б) будет равна:


.


По закону Гесса будет равна:


.


Согласно уравнению (2.17): В.


Таблица 2.6.

Основные химические и электрохимические равновесия в системе Ni-Si-H2O при 25 0С, 1 атм. (воздух)

№линии Электродная реакция Равновесный потенциал (В) или рН раствора

атм.

0,186-0,0591рН

атм.

1,219-0,0591рН
1

-1,151-0,0591рН
2

3

-0,980-0,0591рН
4

5

-0,897-0,0591рН
6

7

-0,762-0,0591рН
8

9

-0,714-0,0591рН
10

11

-0,645-0,0591рН
12

13

рН

14

15

-0,49-0,0591рН
16

0,133-0,0591рН
17

18

рН 3,4
19

(0,806х2-0,67х-0,0591хрН) / (х-1)
20

1,602-0,0591рН
21

22


Подставив значение в уравнение (1.27) или (1.28) и учитывая, что , получим равновесный потенциал реакции (3):


рН.


2) Электрохимическое равновесие 4:



рассчитывалось сложением равновесий 3 и 13:


а) ,

;

б) , рН 13,94.


Используя уравнение (1.31), найдем энергию Гиббса реакции (б):


.


Тогда энергия Гиббса равновесия 4:


,

Отсюда .


Равновесный потенциал реакции 4:



Аналогичным образом были рассчитаны остальные фазовые равновесия. Результаты расчетов приведены в табл.2.6.


Рис.2.3 Диаграмма рН-потенциал системы Ni-Si-H2O при 25 0С, 1 атм. (воздух) и =1 .


Рис.2.4 Диаграмма рН-потенциал системы Ni-Si-H2O при 25 0С, 1 атм. (воздух) и =10-3 .


Рис.2.5 Диаграмма рН-потенциал системы Ni-Si-H2O при 25 0С, 1 атм. (воздух) и =10-6 .


На диаграмме можно выделить 21 область преобладания различных фаз:


I.

II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

X.

XI.

XII.

XIII.

XIV.

XV.

XVI.

XVII.

XVIII.

XIX.

XX.

XXI.


Область I - область иммунности γ-фазы, интерметаллидов и чистого кремния, когда сплав не подвергается коррозии. Выше линии 1 кремний термодинамически неустойчив и окисляется до кремнезема () в кислых средах и до в щелочных средах, интерметаллиды и γ-фаза остаются термодинамически устойчивыми фазами. Выше линии 3 происходит последовательное диспропорционирование , и так далее вплоть до . Области XIV, XVI и XVII - области термодинамической устойчивости . В кислых средах он неустойчив и распадается с образованием и свободных ионов никеля . Области XVII, XVIII и XIX отвечают образованию оксидов никеля . В областях транспассивности - XX и XXI - происходит перепассивация сплава по никелю. Коррозия сплава происходит во всех областях, находящихся правее линии 13, а также избирательная коррозия в областях XV и XVI.

Состав образующейся пассивационной пленки может быть разным. Если в сплаве достаточно много кремния, то образуется сплошная пассивационная оксидная пленка в виде . Если кремния недостаточно для образования сплошной пленки из кремнезема, пассивационная пленка представляет из себя . В случае недостатка кремния даже для образования , в качестве пассивационной пленки выступает оксид никеля с включениями из . Сравнение диаграмм, построенных при различных значениях активностей ионов в растворе, показывает, что с уменьшением активностей ионов снижаются потенциалы растворения компонентов сплава и потенциал перепассивации сплава по никелю. Области активной коррозии расширяются, а области пассивности наоборот уменьшаются и сдвигаются в более кислую область. Области устойчивости XIV и XVI тоже имеют тенденцию к уменьшению. Линии и на