Расчет настроек автоматического регулятора 2
VALIGN=TOP>21
20,0000
0,9745
22
21,0000
0,9794
23
22,0000
0,9909
24
23,0000
0,9926
25
24,0000
0,9942
26
25,0000
0,9942
27
26,0000
0,9975
2
827,0000
1,0000
Нормированная кривая разгона по управлению.
-
1
0,0000
0,0000
21
20,0000
0,7606
2
1,0000
0,0000
22
21,0000
0,7957
3
2,0000
0,0000
23
22,0000
0,8424
4
3,0000
0,0000
24
23,0000
0,8691
5
4,0000
0,0000
25
24,0000
0,8907
6
5,0000
0,0000
26
25,0000
0,9091
7
6,0000
0,0000
27
26,0000
0,9324
8
7,0000
0,0000
28
27,0000
0,9458
9
8,0000
0,0083
29
28,0000
0,9541
10
9,0000
0,0384
30
29,0000
0,9608
11
10,0000
0,0684
31
30,0000
0,9708
12
11,0000
0,1201
32
31,0000
0,9775
13
12,0000
0,1852
33
32,0000
0,9825
14
13,0000
0,2869
34
33,0000
0,9858
15
14,0000
0,3920
35
34,0000
0,9908
16
15,0000
0,4621
36
35,0000
0,9942
17
16,0000
0,5271
37
36,0000
0,9958
18
17,0000
0,5872
38
37,0000
0,9958
19
18,0000
0,6689
39
38,0000
0,9975
20
19,0000
0,7189
40
39,0000
1,0000
Аппроксимация методом Симою.
С помощью программы ASR в пункту аппроксимации последовательно считаем площади каждой из кривой разгона для последующего получения уравнения передаточной функции.
Для кривой разгона по возмущению для объекта второго порядка получаем следующие данные:
Значения коэффициентов:
F1= 6.5614
F2= 11.4658
F3= -4.5969
F4= -1.1636
F5= 44.0285
F6= -120.0300
Ограничимся второй площадью. F1>F2, тогда передаточная функция по возмущению для объекта второго порядка имеет вид:
1
W(s)=---------------------------
2
11,4658s + 6.5614s + 1
Для кривой разгона по заданию для объекта второго порядка получаем следующие данные:
Значения коэффициентов:
F1= 9.5539
F2= 24.2986
F3= -16.7348
F4= -14.7318
F5= 329.7583
F6= -1179.3989
Ограничимся второй площадью , с учетом того что F1>F2. Тогда передаточная функция по управлению для объекта второго порядка имеет вид:
1
W(s)=----------------------------
2
24,2986s + 9.5539s +1
Для кривой разгона по заданию для объекта третьего порядка с запаздыванием получаем следующие данные:
Значения коэффициентов:
F1= 10.6679
F2= 38.1160
F3= 30.4228
F4= -46.5445
F5= 168.8606
F6= -33.3020
Ограничимся третьей площадью и учтем что каждая последующая площадь больше предыдущей. Тогда передаточная функция по заданию для объекта третьего порядка с запаздыванием имеет вид:
1
W(s)=----------------------------------------
3 2
30,4228s + 38.1160s + 10.7769 + 1
Проверка аппроксимации методом Рунге - Кутта.
В программе ASR в пункте передаточная функция задаем полученные передаточные функции. И затем строим графики экспериментальной и аналитической кривых разгона (по полученной передаточной функции).
Для кривой разгона по возмущению.
Устанавливаем для проверки методом Рунге-Кутта конечное время 35,5с, шаг 0,5с.
Для кривой разгона по заданию.
Устанавливаем конечное время 55с, шаг 0,5с.
Для кривой разгона по управлению.
При задании передаточной функции учитываем чистое запаздывание 0,08с.
Устанавливаем конечное время 39с, шаг изменения 0,5с.
Получили, что кривые разгона практически одинаковы, следовательно аппроксимация методом Симою сделана верно.
Для объекта второго порядка по возмущению имеем погрешность метода около 25%, по заданию - около 15%, а для объекта третьего порядка с запаздыванием по управлению - около 5%.
Сравним экспериментальные и исходные передаточные функции:
объект исходная экспериментальная
передаточная передаточная
функция функция
второго порядка 1 1
по возмущению W(s)= -------------------- W(s)= -----------------------------
2 2
0.01s + 0.2s + 1 11.465s + 6.5614s +1
второго порядка 1 1
по заданию W(s)= ----------------------- W(s)= -----------------------------
2 2
0.4489s + 1.34s +1 24.2986s + 9.5539s +1
третьего порядка 1000 1
с запаздыванием W(s)= ------------------------------------- W(s)= -------------------------------------
по управлению 3 2 3 2
4.2188s + 168.75s + 2250s + 1 30.4228s + 38.116s + 10.7769s + 1
Полученные значению передаточных функций отличают на 1000 - 7500, что говорит о