Статистический анализ производства зерна, сахарной свеклы, подсолнечника

уровня себестоимости):


(26)

где Icc - индекс структурных сдвигов.

Система взаимосвязанных индексов при анализе динамики средней себестоимости имеет следующий вид:


(27)


2.2 Индексный анализ изменения средней себестоимости производственных затрат


Исходные данные для индексного анализа по хозяйствам приведены в таблице 5.


Таблица 5. Исходные данные для индексного анализа

Наимено-вание предприятий Себестоимость 1 ц. продукции Количество произведенной продукции, ц. Производственные затраты, тыс. руб.

Базисный год (z0) Отчетный год (z1) Базисный год (q0) Отчетный год (q1) Базисный год (z0q0) Отчетный год (z1q1) Условный (z0q1)
1 100.16 103.96 33507 28810 3356061.1 2995088 2885610
2 144.67 187.91 32535 17987 4706838.5 3379937 2602179
3 132.66 119.92 21302 19113 2825923.3 2292031 2535531
4 86.4 99.73 33183 30312 2867011.2 3023016 2618957
5 84.06 153.63 40790 41028 3428807.4 6303132 3448814
6 63.3 120.36 28640 24809 1812912 2986011 1570410
7 39.58 54.63 30244 29929 1197057.5 1635021 1184590
8 215.73 179.97 26918 23759 5807020.1 4275907 5125529
9 162.7 258.3 38014 50990 6184877.8 13170717 8296073
10 52.3 152.09 60322 36425 3154840.6 5539878 1905028
11 58.07 119.64 236.42 12019 13728.909 1437953 697943.3
12 67.6 76.24 19070 21053 1289132 1605081 1423183
13 87.75 110.83 21972 13678 1928043 1515933 1200245
14 140.58 156.47 60114 72990 8450826.1 11420745 10260934
15 81.8 163.11 42775 36465 3498995 5947806 2982837
16 160.89 165.22 26540 33677 4270020.6 5564114 5418293
17 123.13 193.39 32591 30534 4012929.8 5904970 3759651
18 103.06 184.72 22512 23609 2320086.7 4361054 2433144
19 149.06 193 9620 10689 1433957.2 2062977 1593302
20 148.36 148.38 22243 22240 3299971.5 3299971 3299526
21 97.3 163.82 10986 19845 1068937.8 3251008 1930919
Итого 108.98 153.29 614114 599961 66927978 91972351 67172696

Проведем индексный анализ средней себестоимости 1 ц. зерна (сахарной свеклы, подсолнечника) по факторам:

Определим среднюю базисную, условную и отчетную себестоимость 1 ц. зерна (сахарной свеклы, подсолнечника):



Найдем общее изменение средней себестоимости 1 ц. зерна (сахарной свеклы, подсолнечника) в отчетном году по отношению к базисному году:

а) в относительном выражении:


или 140 %


б) в абсолютном выражении:


ц/га

Таким образом, средняя себестоимость 1 ц. зерна (сахарной свеклы, подсолнечника) в отчетном году по сравнению с базисным увеличилась на 44,31 или на 40 %.

Определим влияние факторов на среднюю себестоимость 1 ц. зерна (сахарной свеклы, подсолнечника):

Влияние урожайности:

а) в относительном выражении:


или 137 %


б) в абсолютном выражении:



За счет увеличения урожайности 1 ц. зерна (сахарной свеклы, подсолнечника) средняя себестоимость 1 ц. зерна (сахарной свеклы, подсолнечника) увеличилась на 41,33 ц/га или на 37 %

Влияние структуры:

а) в относительном выражении:


или 102 %


б) в абсолютном выражении:


За счет повышения урожайности средняя себестоимость 1 ц. зерна (сахарной свеклы, подсолнечника) увеличилась на 2,98 ц/га или на 1,02 %

Относительная взаимосвязь средней себестоимости по факторам:


1,39 = 1,37*1,02


Абсолютная взаимосвязь абсолютной урожайности по факторам:


1.

2.

3.


Проведем индексный анализ производственных затрат:

а) в относительном выражении:


или 137 %


б) в абсолютном выражении:


ц.


Таким образом, производственные затраты в отчетном году по сравнению с базисным увеличились на 25044373 ц. или на 37 %.

Определим влияние факторов на производственные затраты:

1) Влияние себестоимости 1 ц. продукции, произведенной в отдельных хозяйствах:

а) в относительном выражении:


или 137 %


б) в абсолютном выражении:


ц


За счет увеличения себестоимости 1 ц. продукции в отдельных хозяйствах производственные затраты увеличились на ц или на 37 %

2) Влияние структуры произведенной продукции:

а) в относительном выражении:


или 102 %


б) в абсолютном выражении:


ц.


За счет улучшения структуры произведенной продукции производственные затраты увеличилась на ц или на 2 %

3) Влияние количества произведенной продукции:

а) в относительном выражении:


или на 97 %

б) в абсолютном выражении:


ц


За счет уменьшения количества произведенной продукции производственные затраты уменьшились на 1542393,94 ц. или на 3 %

Относительная взаимосвязь по факторам:


1,35 = 1,37 * 1,02 * 0,97


Абсолютная взаимосвязь абсолютной себестоимости по факторам:



Таким образом, повышение средней себестоимости произошло за счет повышения урожайности на 41,33 ц/га или на 37 %, а за счет фактора улучшения структуры произведенной продукции средняя себестоимость увеличилась на 1799883 ц/га или на 2 %.

На объем производственных затрат положительно повлияли повышение себестоимости в отдельных хозяйствах и отрицательно - уменьшение количества произведенной продукции, положительно повлияло улучшение структуры произведенной продукции. В результате производственные затраты в отчетном году по сравнению с базисным увеличились на 25044373 ц. или на 37 %.

3.Выявление взаимосвязи методом аналитической группировки


3.1 Сущность группировки, их виды и значение


Группировка — это распределение единиц по группам в соответствии со следующим принципом: различия между единицами, отнесенными к одной группе, должны быть меньше, чем между единицами, отнесенными к разным группам.

Группировка лежит в основе всей дальнейшей работы с собранной информацией. На основе группировки рассчитываются сводные показатели по группам, появляется возможность их сравнения, анализа причин различий между группами, изучения взаимосвязей между признаками. Если рассчитать сводные показатели только в целом по совокупности, то мы не сможем уловить ее структуры, роли отдельных групп, их специфики.

Однородность (гомогенность) данных является исходным условием их статистического описания и анализа - вычисления и интерпретации обобщающих показателей, построения уравнения регрессии, измерения корреляции, статистического умозаключения. [8, с. 90]

Таким образом, значение группировки состоит в том, что этот метод обеспечивает обобщение данных, представление их в компактном, обозримом виде. Кроме того, группировка создает основу для последующей сводки и анализа данных.

Для изучения структурных изменений в экономике государственная статистика использует группировку хозяйственных субъектов по формам собственности и организационно-правовым формам.

Сводные показатели для отдельных групп являются типичными и устойчивыми, если, во-первых, группировка проведена правильно, во-вторых, группы имеют достаточную численность. Первое условие связано с тем, что деление на группы далеко не всегда очевидно. Выполнение второго условия необходимо, так как при достаточно большом числе единиц (не менее 5 единиц в группе) в сводных показателях взаимопогашаются случайные характеристики и проявляются закономерные, типичные.

Для решения задачи группировки нужно установить правила отнесения каждой единицы к той или иной группе.

В эти правила входят определения тех характеристик (признаков), по которым будет проводиться группировка (так называемых группировочных признаков), и их значений, отделяющих одну группу от другой (интервалов группировки).

Группировка называется простой (монотетической), если для ее построения используется один группировочный признак. Если группировка проводится по нескольким признакам, она называется сложной (политетической). Обычно такая группировка проводится как комбинационная, т.е. группы, выделенные по одному признаку, подразделяются на подгруппы по другому признаку. Казалось бы, этот метод выделения групп должен быть лучше простой группировки - ведь трудно ожидать, что различия между группами можно уловить лишь на основе одного признака. Однако комбинация признаков приводит к дроблению совокупности в геометрической прогрессии: число групп будет равно произведению числа группировочных признаков (l) на число выделенных категорий по каждому из них (т): к = l * т. Данные становятся труднообозримыми, группы включают малое число единиц, групповые показатели становятся ненадежными.

Альтернативой является проведение многомерных группировок или многомерных классификаций

Очевидно, что метод группировок тесно связан с представлением данных в виде групповых или комбинационных таблиц, а также с графическим представлением структуры совокупности ее частей и соотношений между ними.

Группировка производится с целью установления статистических связей и закономерностей, построения описания объекта, выявления структуры изучаемой совокупности. Различия в целевом назначении группировки выражаются в существующей в отечественной статистике классификации группировок: типологические, структурные, аналитические.

Типологическая группировка служит для выделения социально-экономических типов. Этот вид группировок в значительной степени определяется представлениями экспертов о том, какие типы могут встретиться в изучаемой совокупности. Чтобы пояснить особенность этой группировки, остановимся на последовательности действий для ее проведения:

1) называются те типы явлений, которые могут быть выделены;

2) выбираются группировочные признаки, формирующие описание типов;

3) устанавливаются границы интервалов;

4) группировка оформляется в таблицу, выделенные группы (на основе комбинации группировочных признаков) объединяются в намеченные типы, и определяется численность каждого из них.

Структурная группировка характеризует структуру совокупности по какому-либо одному признаку.

Аналитическая группировка характеризует взаимосвязь между двумя и более признаками, из которых один рассматривается как результат, другой (другие) — как фактор (факторы).


3.2 Аналитическая группировка хозяйств по одному из факторов (Х- урожайность зерна (сахарной свеклы, подсолнечника), уровень интенсификации), влияющих на себестоимость 1 ц. зерна (сахарной свеклы, подсолнечника)


Проведем группировку предприятий, образовав 5 групп:

Рассчитаем величину интервала:


Таблица 6. Исходные данные по группам

Группа предприятий по урожайности ц/га (Х) Номер предприятия Валовой сбор, ц. Площадь посева, га Себестоимость произведенной продукции Уровень интенсификации, тыс. руб. Число предприятий, ед.
1 2 3 4 5 6 7
Границы групп





13.2 - 18.1 21 21049.8 1594 1604151 1007

1 12027.4 781 1438958 1841

6 10696.6 677 2064444 3047

18 19057 1121 2285315 2045

10 36523.8 2064 6035949 2882

20 28729.2 1614 298688 1856
Итого по 1 группе
128083.8 7851 13727505 12678 6
18.1 - 23 17 30258.9 1601 3017720 1888

8 30511.8 1541 5636140 3832

4 19820.4 996 3246978 3264

9 33640 1682 6505640 3308

14 29936.4 1482 1635426 1103

7 23649.5 1165 4564354 3743

15 24840 1200 2989742 2488

11 36485.5 1697 5549080 3264

16 40918.6 1877 6286325 358
Итого по 2 группе
270061.1 13241 39431405 23248 9
23 - 27.9 19 18008.2 677 3383921 4993

2 30690 1100 4969325 4526
Итого по 3 группе
48698.2 1777 8353246 9519 2
27. 9 - 32.8 5 22226.4 756 3297953 4365

3 126387 4185 30067467 7184

13 23759.5 779 4275997 5489
Итого по 4 группе
172372.9 5720 37641417 17038 3
32.8 - 37.7 12 50970.4 1352 13165654 9742
Итого по 5 группе
50970.4 1352 13165654 9742 1







Итого
670186.4 29941 112319227 72225 21

Таблица 7. Аналитическая группировка сельскохозяйственных предприятий по урожайности

Группа предприятий по урожайности ц/га (Х) Количество предприятий, ед. Себестоимость 1 ц., руб. Урожайность, ц/га Уровень интенсификации, тыс. руб.
А 1 2 3 4
Границы групп



13.2 - 18.1 6 107175.96 16.31 2113
18.1 - 23 9 146009.19 20.39 2583.11
23 - 27.9 2 171530.89 27.4 4759.5
27. 9 - 32.8 3 218372.01 30.13 5679.33
32.8 - 37.7 1 258299.99 37.7 9742
В среднем по совокупности предприятий
180277.608 26.386 4975.388

Таким образом, между урожайностью и себестоимостью 1 ц. зерна (сахарной свеклы, подсолнечника) существует прямая связь, т. е. повышение урожайности на 25 % даёт повышение себестоимости на 38833,23 руб.

4.Корреляционно-регрессионный анализ


4.1 Сущность и основные условия применения корреляционного анализа


В соответствии с сущностью корреляционной связи ее изучение имеет две цели:

1) измерение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной (зависимость средних величин результативного признака от значений одного или нескольких факторных признаков);

2) измерение тесноты связи двух (или большего числа) признаков между собой.

Вторая задача специфична для статистических связей, а первая разработана для функциональных связей и является общей. Основным методом решения задачи нахождения параметров уравнения связи является метод наименьших квадратов (МНК), разработанный К. Ф. Гауссом (1777-1855). Он состоит в минимизации суммы квадратов отклонений фактически измеренных значений зависимой переменной у от ее значений, вычисленных по уравнению связи с факторным признаком (многими признаками) х. [5, с. 78]

Для измерения тесноты связи применяется несколько показателей. При парной связи теснота связи измеряется прежде всего корреляционным отношением, которое обозначается греческой буквой η. Квадрат корреляционного отношения - это отношение межгрупповой дисперсии результативного признака, которая выражает влияние различий группировочного факторного признака на среднюю величину результативного признака, к общей дисперсии результативного признака, выражающей влияние на него всех причин и условий. Квадрат корреляционного отношения называется коэффициентом детерминации:

(28)


где k - число групп по факторному признаку;

N — число единиц совокупности;

уi — индивидуальные значения результативного признака;

i - его средние групповые значения;

- его общее среднее значение;

fi - частота в j-й группе.

Формула (1) применяется при расчете показателя тесноты связи по аналитической группировке. При вычислении корреляционного отношения по уравнению связи (уравнению парной или множественной регрессии) применяется формула (2):


(29)


где - индивидуальные значения у по уравнению связи.

Сумма квадратов в числителе - это объясненная связью с фактором х (факторами) дисперсия результативного признака у. Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии. [11, с. 300]

Если уравнение выбрано неверно или сделана ошибка при расчете его параметров, то сумма квадратов в числителе может оказаться большей, чем в знаменателе, и отношение утратит тот смысл, который оно должно иметь, а именно какова доля общей вариации результативного признака, объясняемая на основе выбранного уравнения связи его с факторным признаком (признаками). Чтобы избежать ошибочного результата, лучше вычислять корреляционное отношение по другой формуле (3), не столь наглядно выявляющей сущность показателя, но зато полностью гарантирующей от возможного искажения:


(30)


В числителе формулы (3) стоит сумма квадратов отклонений фактических значений признака у от его индивидуальных расчетных значений, т.е. доля вариации этого признака, не объясняемая за счет входящих в уравнение связи признаков-факторов. Эта сумма не может стать равной нулю, если связь не является функциональной. При неверной формуле уравнения связи или ошибке в расчетах возрастают расхождения фактических и расчетных значений, и корреляционное отношение снижается, как логически и должно быть.

В основе перехода от формулы (2) к формуле (3) лежит известное правило разложения сумм квадратов отклонений при группировке совокупности:


Dобщ=Dмежгр+Dвнутригр


Согласно этому правилу можно вместо межгрупповой (факторной) дисперсии использовать разность:


Dобщ - Dвнутригр


что дает:

(31)


При расчете η не по группировке, а по уравнению корреляционной связи (уравнению регрессии) мы используем формулу (3). В этом случае правило разложения суммы квадратов отклонений результативного признака записывается как


Dобщ=Dобъясн уравн регр+Dост


Важнейшее положение, которое следует теперь усвоить любому, желающему правильно применять метод корреляционно-регрессионного анализа, состоит в интерпретации формул (2) и (3). Это положение гласит:

Уравнение корреляционной связи измеряет зависимость между вариацией результативного признака и вариацией факторного признака (признаков). Меры тесноты связи измеряют долю вариации результативного признака.

Интерпретировать корреляционные показатели строго следует лишь в терминах вариации (различий в пространстве) отклонений от средней величины. Если же задача исследования состоит в измерении связи не между вариацией двух признаков в совокупности, а между изменениями признаков объекта во времени, то метод корреляционно-регрессионного анализа требует значительного изменения. [15, с. 145]

Из вышеприведенного положения об интерпретации показателей корреляции следует, что нельзя трактовать корреляцию признаков как связь их уровней. Это ясно хотя бы из следующего примера. Если бы все крестьяне области внесли под картофель одинаковую дозу удобрений, то вариация этой дозы была бы равна нулю, а следовательно, она абсолютно не могла бы влиять на вариацию урожайности картофеля. Параметры корреляции дозы удобрений с урожайностью будут тогда строго равны нулю. Но ведь и в этом случае уровень урожайности зависел бы от дозы удобрений - он был бы выше, чем без удобрений.

Итак, строго говоря, метод корреляционно-регрессионного анализа не может объяснить роли факторных признаков в создании результативного признака. Это очень серьезное ограничение метода, о котором не следует забывать.

Следующий общий вопрос - это вопрос о «чистоте» измерения влияния каждого отдельного факторного признака. Группировка совокупности по одному факторному признаку может отразить влияние именно данного фактора на результативный признак при условии, что все другие факторы не связаны с изучаемым, а случайные отклонения и ошибки взаимопогасились в большой совокупности. Если же изучаемый фактор связан с другими факторами, влияющими на результативный признак, будет получена не «чистая» характеристика влияния только одного фактора, а сложный комплекс, состоящий как из непосредственного влияния фактора, так и из его косвенных влияний, через его связь с другими факторами и их влияние на результативный признак. Данное положение полностью относится и к парной корреляционной связи.

Однако коренное отличие метода корреляционно-регрессионного анализа от аналитической группировки состоит в том, что корреляционно-регрессионный анализ позволяет разделить влияние комплекса факторных признаков, анализировать различные стороны сложной системы взаимосвязей. Если метод комбинированной аналитической группировки, как правило, не дает возможность анализировать более 3 факторов, то корреляционный метод при объеме совокупности около ста единиц позволяет вести анализ системы с 8-10 факторами и разделить их влияние.

Наконец, развивающиеся на базе корреляционно-регрессионного анализа многомерные методы (метод главных компонент, факторный анализ) позволяют синтезировать влияние признаков (первичных факторов), выделяя из них непосредственно не учитываемые глубинные факторы (компоненты). Например, изучая корреляцию ряда признаков интенсификации сельскохозяйственного производства, таких, как фондообеспеченность, затраты труда на единицу Площади, энергообеспеченность, внесение удобрений на единицу площади, плотность поголовья скота, можно синтезировать общую часть их влияния на уровень продукции с единицы площади или на производительность труда, получив обобщенный фактор «интенсификация производства», непосредственно не измеримый, не отражаемый единым показателем.

Правильное применение и интерпретация результатов корреляционно-регрессионного анализа возможны лишь при понимании всех специфических черт, достоинств и ограничений метода.

Необходимо сказать и о других задачах применения корреляционно-регрессионного метода, имеющих не формально математический, а содержательный характер.

1. Задача выделения важнейших факторов, влияющих на результативный признак (т.е. на вариацию его значений в совокупности). Эта задача решается в основном на базе мер тесноты связи факторов с результативным признаком.

2. Задача оценки хозяйственной деятельности по эффективности использования имеющихся факторов производства. Эта задача решается путем расчета для каждой единицы совокупности тех величин результативного признака, которые были бы получены при средней по совокупности эффективности использования факторов и сравнения их с фактическими результатами производства,

3. Задача прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.

Такая задача решается путем подстановки ожидаемых, или планируемых, или возможных значений факторных признаков в уравнение связи и вычисления ожидаемых значений результативного признака.

Приходится решать и обратную задачу: вычисление необходимых значений факторных признаков для обеспечения планового или желаемого значения результативного признака в среднем по совокупности. Эта задача обычно не имеет единственного решения в рамках данного метода и должна дополняться постановкой и решением оптимизационной задачи на нахождение наилучшего из возможных вариантов ее решения (например, варианта, позволяющего достичь требуемого результата с минимальными затратами).

4. Задача подготовки данных, необходимых в качестве исходных для решения оптимизационных задач. Например, для нахождения оптимальной структуры производства в районе на перспективу исходная информация должна включать показатели производительности на предприятиях разных отраслей и форм собственности. В свою очередь, эти показатели могут быть получены на основе корреляционно-регрессионной модели либо на основании тренда динамического ряда (а тренд - это тоже уравнение регрессии).

При решении каждой из названных задач нужно учитывать особенности и ограничения корреляционно-регрессионного метода. Всякий раз необходимо специально обосновать возможность причинной интерпретации уравнения как объясняющего связь между вариацией фактора и результата. Трудно обеспечить раздельную оценку влияния каждого из факторов. В этом отношении корреляционные методы глубоко противоречивы. С одной стороны, их идеал - измерение чистого влияния каждого фактора. С другой