Природа геохимической зональности вкрест простирания Камчатской островной дуги

U/Th во всех породах Камчатки выше, чем в NMORB и варьируют от 0,41 до 0,58 в ВВФ, от 0,57 до 0,71 в ЦКД и от 0,38 до 0,64 в породах СХ. Исключением среди пород ЦКД является образец 2310 с вулкана Камень, в котором первичное U/Th отношение достигает 0,79. Это наивысшее известное U/Th отношение в примитивных базальтах Камчатки. Наряду с этим, породы вулкана Камень характеризуется самыми низкими LILE и LREE и самыми высокими HREE в сравнении с другими вулканическими сериями ЦКД (рис.6 Д, 9).

Sr-, Nd-, и Pb-изотопы

Sr-, Nd- и Pb-изотопные данные для пород пересечения приведены на рис.7 и 8 . Фигуративные точки ложатся довольно близко к области MORB. Имея представительную коллекцию образцов, мы можем идентифицировать внутри Камчатского поля более мелкие структуры, характерные для каждого региона. В целом наблюдается возрастание 87Sr/86Sr и 143Nd/144Nd отношений от ВВФ к ЦКД и дальнейшее их убывание от ЦКД к СХ (рис.7 и 8 ). Поля точек ВВФ и СХ очень близки на Sr-Nd диаграмме, за исключением двух образцов с вулкана Комарова, имеющих повышенные значения 87Sr/86Sr. Наблюдается широкий диапазон значений по Nd изотопам для ВВФ и СХ, в то время, как Sr изотопные отношения близки. Наивысшее обогащение по 87Sr в пределах ЦКД найдено для лав Ключевского вулкана, где отношение 87Sr/86Sr достигает 0.70366.

По Pb изотопной систематике лавы ЦКД менее радиогенные, чем породы ВВФ, но близки к полю СХ (рис.7 В). Породы ВПТ идентичны с другими лавами СХ. Для сравнения, на рис.8 показаны данные для вулкана Бакенинг (ВВФ, 200 км к югу от пересечения, [12]). Эти породы еще менее радиогенны по Sr при сравнимых значениях Nd и Pb изотопов. Исследования клинопироксенов (предварительно очищенных) из мантийных ксенолитов Камчатки (неопубликованные данные) показало, что по Nd изотопам мантийные ксенолиты близки вулканическим породам, но по Sr отношениям разброс точек ещё более широкий.

Изотопы кислорода

Подробно изотопная систематика кислорода в породах Ключевского вулкана изложена в [11]. Поэтому здесь мы только подчеркнем наиболее важные результаты.

Изотопные отношения кислорода в одиночных зернах оливинов из различных пород Камчатского пересечения изменяются от 5,6 до 7,4 . Максимальные значения отмечены для вулканов Ключевской группы. Значения изотопов кислорода в расплавах Ключевского вулкана рассчитывались как среднее 18O в оливине с учетом эффекта фракционирования оливин-расплав при 1100-1200o. Диапазон значений (6,2-7,5 ) оказался явно шире, а значения выше, чем для типичных мантийных расплавов [11].

Рис. 9

 Установлены положительные корреляции 18O с отношением 87Sr/86Sr (рис.8 ), причем лавы исторических извержений имеют тенденцию к повышенным значениям обоих отношений в сравнении с более ранними голоценовыми извержениями. Установлены положительные корреляции между 18O и Cs, Li, Sr, Ba, Rb, Pb, Th, U, LREE и K, то есть с подвижными во флюиде элементами, а так же с отношениями K2O/Na2O, Ba/Zr и La/Yb. Отрицательная корреляция 18O была найдена с U/Th отношением, однако корреляции с подвижными в расплаве Al и HFSE отсутствуют.

U-Th систематика

Самые низкие значения U/Th элементных отношений (0,35 - 0,6) наблюдаются в породах СХ за исключением нескольких точек с более высокими отметками, а наивысшие - в породах ЦКД (0,5 - 0,9). В породах ВВФ это отношение меняется от 0,45 до 0,75. U-Th изотопная систематика представлена на диаграмме (230Th/232Th)-(238U/232Th) (рис.9 ). На графике очевидны те же закономерности: наименьшие значения типичны для пород СХ, породы ВВФ имеют средние значения и лавы ЦКД характеризуются наивысшими изотопными отношениями, достигая значений 2,29 для (238U/232Th) и 2,15 для (230Th/232Th) в породах вулкана Камень.

Значительное 238U-230Th изотопное неравновесие с относительным обогащением U над Th, типичное для ряда островных дуг и интерпретируемое как результат добавки относительно молодого ( 5% MgO, можно уменьшить влияние процесса фракционирования на геохимическое разнообразие полученных расплавов. Тем не менее, остается еще ряд причин, влияющих на геохимическую неоднородность лав: (1) разнообразие мантийных источников, (2) обогащение мантийного клина водным субдукционным флюидом, (3) добавка осадочного материала в мантийный источник и (4) различная степень плавления мантийного вещества при движении от фронта к тылу дуги.

Используя Pb и Be изотопные данные, Керстинг и Аркулюс [17,5] доказали, что добавка осадочного материала незначительна в формировании Камчатских магм. Кроме того, вариации изотопных отношений Sr и O в лавах Ключевского вулкана, указывают на то, что флюид, являющийся спусковым крючком начала плавления вещества верхней мантии, формируется в основном в измененной океанической коре [11].

Процесс плавления

Рис.11

 Уменьшение степени плавления Ol-Opx-Cpx мантии, приведет к обогащению расплава по несовместимым элементам. Остаточный гранат в мантии может сильно влиять на HREE и Y, удерживая эти элементы в расплаве на низком уровне до момента его полного исчезновения. Низкие значения La/Yb отношения (1,83 - 10,28), отсутствие обогащения 230Th над 238U и низкие концентрации тяжелых REE (6-15 раз выше хондритовых значений), указывают на отсутствие значительных количеств остаточного граната в мантийных источниках пород Камчатки.

Планк и Лангмюр [24] показали, что степень плавления под активными островными дугами зависит от мощности мантийного клина и выражена в отрицательной корреляции между Ca6,0 и Na6,0 от фронта дуги к тылу. Причина такой корреляции в том, что Ca удерживается клинопироксеном в мантии, а Na - нет. В случае Камчатского пересечения такой тренд должен быть очевиден, поскольку глубина сейсмофокальной зоны увеличивает в 4 раза от ВВФ к СХ. Это мы и наблюдаем на диаграмме CaO6,0 - Na2O6,0 (рис.11 A), где наши данные полностью совпадают с трендом [24]. (Na2O/CaO)6,0 прогрессивно растет от ВВФ к ЦКД и далее остается постоянным к СХ (рис.11 Б). Наивысшие значения Na6,0 найдены в породах ВПТ, что свидетельствует в пользу низких степеней плавления мантии в источнике этих пород. Следуя расчетам [24], породы ВВФ имеют наивысшую степень плавления - 20%. Более низкая степень плавления (9-12%) типична для лав ЦКД и СХ. Сходные оценки были получены и при сравнение разных групп несовместимых микроэлементов [9]. Отсутствие зависимости степени плавления от глубины погружения океанической плиты между ЦКД и СХ можно объяснить в рамках двухстадийной модели Пирса и Паркинсона [23]. На первой стадии плавление инициируется поступлением флюида в мантию, что может быть особенно важно для нашего З-В пересечения в связи с высвобождением больших объемов флюида при субдукции подводного Императорского хребта под Камчатку. Вторая стадия является результатом декомпрессионного плавления при уменьшении плотности обводненной мантии и процесса внутридугового спрединга, проявленного в настоящее время в ЦКД.

Вариации в составе мантийного источника до добавления флюида

Рис. 12

 По Nb/Yb отношению (рис.6 В) лавы ВВФ и ЦКД близки источнику MORB. Породы же СХ имеют повышенные значения Nb/Yb, которые резко возрастают в ВПТ лавах. Подобное поведение наблюдается и для Nb/Zr отношения, отвергая гипотезу остаточного граната (см. также выше). Эти признаки однозначно свидетельствуют о том, что мантия под СХ обогащена.

Диаграмма Th/Yb - Ta/Yb использовалась Пирсом [22] для выявления между обогащенным и обедненным источниками в примитивных островных базальтах (рис.12 ). Вариации состава мантийного источника должны выражаться в изменении обоих отношений. Образцы ВВФ и ЦКД попадают в область океанических островных дуг, находясь на границе толеитового и известково-щелочного полей. Лавы СХ формирует узкое поле, простирающееся от океанических дуг к обогащенному мантийному компоненту. Расположение всех фигуративных точек Камчатских лав (включая образцы ВПТ) над полем мантийной "стрелки" вызвано флюидной добавкой Th при постоянном Yb, предполагая добавку флюида к различным (от обедненного до слегка обогащенного) мантийным источникам. Более близкое положение лав ВПТ СХ к полю мантийных значений указывает на меньшее влияние в них флюида.

Две причины могут объяснить наблюдаемое обогащение мантийного источника СХ по HFSE: наличие источника типа OIB (базальт океанических островов), либо влияние глубинного флюида. Под СХ флюиды отделяются от плиты при более высоких P-T-условиях, при которых многие фазы, несущие HFSE, становятся не устойчивы. Такие флюиды содержат больше количество растворенных веществ, что расширяет их возможности переноса HFSE [7]. Состав флюида, обогащающего базальты задуговых бассейнов [27] обогащен по Y, но имеет Ta/Y отношение только вдвое выше, чем в источнике NMORB. Предположительно, такое же поведение и для Nb/Yb отношения, поскольку Nb и Yb ведут себя аналогично Ta и Y в мантии. Поэтому, трудно объяснить обогащение ВПТ базальтов по Nb/Yb (в 10 раз выше значений NMORB) только добавкой водного флюида.

На рисунке 8 внутри поля изотопных данных Камчатки выделяется три тренда, что предполагает участие трех компонентов в генезисе пород. От поля MORB, характеризующегося 87Sr/86Sr < 0.7031 и 143Nd/144Nd 0.5131, один тренд направлен к более высоким отношениям 87Sr/86Sr при неизменном 143Nd/144Nd. Флюид, отделяющийся от плиты, имеет такие ожидаемые отношения [11]. Второй тренд, сформированный в основном лавами СХ, идет с понижением неодимовых изотопных отношений при увеличении стронциевых. Такой тренд, вероятно, является результатом смешения с обогащенным мантийным компонентом, что согласуется с нашей интерпретацией о наличии компонента типа OIB в тыловой части дуги.

Породы ВВФ формируют поле между двумя упомянутыми трендами. Низкие концентрации HFSE в лавах ВВФ свидетельствуют об отсутствии компонента типа OIB в их источнике. Падению Nd-изотопных отношений сопутствуют повышенные значения изотопов Pb (рис.7 В) и обогащение пород по Th/Nb элементному отношению. Керстинг и Аркулюс [17] показали, что тихоокеанские осадки около Камчатки обогащены по Pb- и обеднены по Nd-изотопам. Согласно нашим данным, в источнике некоторых пород ВВФ можно допустить малое количество ( 1.7)) отношений, 18О, некоторых халькофильных элементов и бора [18] в породах ЦКД, а также серы в расплавных включениях и присутствие серы как S6+, свидетельствуют о повышенной флюидной добавке в этом регионе. Как было показано ранее [11], флюиды, обогащенные18О и 87Sr/86Sr, отделяются от измененной океанической коры под Камчаткой и многократно фильтруются через мантийный клин, метасоматизируя его и обогащая тяжелыми изотопами. Логично предположить, что источником большого объема таких флюидов может являться Императорский подводный хребет, субдуцирущий в районе северного пересечения под Камчатку.

Однако флюидная добавка в мантийные источники ВВФ и ЦКД не обязательно происходила в настоящее время. U-Th изотопные значения в породах ВВФ и СХ лежат на линии равновесия, свидетельствуя о том, что флюид мог отделиться от плиты более 350 тыс. лет назад (время уравновешивания изотопов). Слабое неравновесие ((238U/230Th) = 1,0-1,15) можно наблюдать только для некоторых вулканов Ключевской группы, и по расчетным данным возраст этого флюидного обогащения не менее 130 тыс. лет (рис.9 ).

Различные модели существуют относительно минерального состава и степени дегидратации субдуцируемой плиты [8,25,23], т.е. параметров, влияющих на состав флюида. Источником Rb, K, Ba и Sr в магмах может быть амфибол, удерживающий эти элементы до глубин 60-70 км. Разрушение фенгита сопровождается сильным привносом Rb в мантию и немедленным понижением K/Rb отношения. Это отношение переменно в лавах ВВФ (300-600) и ЦКД (400-600) но практически постоянно в островодужных лавах СХ (460-520), чуть повышаясь в породах ВПТ (~600). Таким образом, эффект фенгита не наблюдается в мантийных источниках Камчатки (в отличие от [30]). Сильное увеличение LREE и La/Yb отношения (при постоянном Yb) от фронта дуги к тылу может быть результатом дегидратации лавсонита [8,32], который, согласно экспериментальным работам, может быть устойчив до 10 GPa [25] и значительно влиять на состав пород СХ.

Нолл и др. [2] показали, что породы фронтальных зон островных дуг обогащены, в отличие от тыловых зон, некоторыми халькофильными элементами (As, Sb), бором и цезием, что обусловлено высокой подвижностью этих элементов во флюиде. As и Sb имеют высокие концентрации в лавах ВВФ и ЦКД, но в образцах СХ сравнимы с NMORB [18]. Уменьшение концентраций Cs, As и Sb на Ce-нормированных диаграммах вкрест простирания дуги объясняется обеднением субдуцируемой плиты по этим элементам на ранних стадиях дегидратации. Обогащение расплавных включений из пород ВВФ и ЦКД по S и Cl так же подтверждает вывод о значительной роли флюида в источнике этих пород.

Магмообразование вкрест простирания Камчатской дуги

Рис. 13

 Мы показали, что: (1) различные источники вовлечены в формирование магм Камчатской дуги; (2) обогащенный компонент типа OIB наблюдается в мантийном источнике тыловой части, (3) субдуговая мантия подобна или слегка обеднена в сравнении с источником NMORB; (4) общий привнос флюидной компоненты в мантийные источники меняется незначительно вкрест дуги.

Рисунок 13 суммирует наши результаты и иллюстрирует модель формирования Камчатского дугового вулканизма. Глубина субдуцируемой под Камчатку плиты увеличивается от 100 км под ВВФ до 200 км под ЦКД и далее на запад, достигая 400 км под СХ. Специфика размещения ЦКД заключается в её расположении над тройным сочленением плит, где Тихоокеанская плита субдуцирует под Евроазиатскую, формируя внутридуговой рифт.

Степень плавления вкрест Камчатской дуги изменяется от 9-12 % (для СХ и ЦКД) до 20% (для ВВФ), что согласуется с опубликованными данными для других вулканических дуг. Вероятно, высокая степень плавления в ВВФ вызвана большим количеством водного флюида, высвобождающегося из субдуцируемой плиты на первой ступени ее обезвоживания. Субдукция Гавайского Императорского подводного хребта в этом районе может играть важную роль в формировании такого флюида. Плавление в зоне ЦКД строго обусловлено двумя факторами: дегидратацией плиты, и восхождением мантийных потоков в результате внутри - дугового рифтогенеза. Плавление в СХ также обязано высвобождению флюида при глубинной дегидратации плиты, но в меньших объемах, чем в других зонах.

Выше было показано, что общий вклад флюидной составляющей в источники Камчатских лав довольно однороден вкрест простирания дуги. Это, однако, не обязательно подразумевает одинаковый поток флюида во всех трех вулканических зонах Камчатки. Одинаковые содержания микроэлементов могут быть получены двумя путями: (1) одинаковым количеством одинакового по составу флюида или (2) различным количеством флюида с