Разработка теории радиогеохимического эффекта

МИНИСТЕРСТВО ВЫСШЕГО СРЕДНЕГО СПЕЦИАЛЬНОГО

ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТЕРЛИТАМАКСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

ИНСТИТУТ

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ТЕОРЕТИЧЕСКОЙ ФИЗИКИ


Ахтямов Рустам Расихович


РАЗРАБОТКА ТЕОРИИ

РАДИОГЕОХИМИЧЕСКОГО ЭФФЕКТА


ДИПЛОМНАЯ РАБОТА


Научный руководитель: д. т. н.,

профессор А.И. Филиппов.


Стерлитамак

Содержание


Введение

Обозначения

1. Результаты экспериментального исследования радиогеохимического эффекта

1.1. Описание и способы регистрации радиогеохимического эффекта

1.2. Примеры экспериментального обнаружения радиогеохимического эффекта

1.3. Выводы

2. Основные уравнения

2.1. Уравнение неразрывности

2.2. Закон Фика

2.3. Уравнение конвективной диффузии

2.4. Метод характеристик

2.5 Слабые растворы

2.6. Равновесие по отношению к радиактивному веществу веществу

2.7. Химический потенциал

3. Разработка теории радиогеохимического эффекта

3.1. Общие предположения теории

3.2. Математические модели радиогеохимического эффекта

3.3. Рельзультаты расчетов и их анализ

3.3.1. График модели

3.3.2 Условие возникновения радиогеохимического эффекта

Заключение

Литература


Введение


В настоящее время к числу нерешенных проблем в области контроля методами промысловой геофизики за процессами обводнения следует отнести выделение коллекторов, заводняемых закачиваемой водой, по скважинам, выходящим из бурения, и по скважинам, обводнившимися в период эксплуатации закачиваемой или пластовой водой.

Перспективным направлением исследований с целью решения этих вопросов является использование эффекта увеличения естественной гамма-активности в заводняемом пласте. Эффект был экспериментально обнаружен более десяти лет назад и получил название «радиогеохимический», он заключается в многократном увеличении естественной гамма активности пород в интервале продуктивных пластов в процессе их обводнения, что проявляется в возникновении аномалий на кривых гамма-каротажа. Из-за недостаточной изученности условий отложения радиоактивных веществ эффект не находит широкого применения.

Цель данной работы заключается в разработке теории радиогеохимического эффекта.

Задачи:

анализ экспериментальных исследований опубликованных в печати;

вывод основных уравнений;

формулировка задач математической физики, описывающих динамику радиоактивных примесей при вытеснении нефти водой;

решение основных задач и проведение численных расчетов на их основе;

определение условий возникновения радиогеохимического эффекта;

анализ результатов расчетов, исследование зависимости величины эффекта от пористости, коэффициента равновесия растворенного вещества между жидкостью и скелетом и от плотности радиоактивных примесей в этих средах.

Практическая значимость заключается в возможности использования результатов исследования в нефтедобывающей промышленности .

Работа состоит из двух глав.

В первой главе описывается радиогеохимический эффект, рассматриваются способы регистрации и примеры результатов экспериментального обнаружения радиогеохимического эффекта.

Во второй главе вводятся основные понятия и уравнения: уравнение неразрывности, химический потенциал, закон Фика, координаты Эйлера и Лагранжа, слабые растворы и равновесия в них по отношению к растворенному веществу, уравнение конвективной диффузии, метод характеристик с рассмотрением частных случаев.

В третьей главе разрабатывается теория эффекта. Здесь строится математическая модель: постановка задач и их решение методом характеристик. Производятся расчёты и на основе их анализа строятся графики, выводится условие возникновения радиогеохимического эффекта. Глава завершается определением выражения для его величины эффекта.

Выражаю глубокую признательность за помощь в написании работы профессору А. И. Филиппову.

Обозначения

– объем занимаемый порами и скелетом соответственно, м3;

– общий объем, м3;

– химический потенциал растворенных радиоактивных веществ относительно жидкости и скелета, Дж/кг;

,– плотность радиоактивных веществ в насыщающей жидкости и скелете, кг/ м3;

– коэффициент массообмена между скелетом и жидкостью, кг2/(Дж м3 с);

– скорость фильтрации насыщающей жидкости, м/c.

1. Результаты экспериментального исследования
радиогеохимического эффекта


В этой главе приводятся результаты экспериментальных исследований полученных при замерах скважин в период и после их эксплуатации. Проводится анализ практических материалов гамма-каротажа , который показывает, что в процессе длительной закачки сточных вод в продуктивные горизонты образуются аномалии, связанные с радиогеохимическим эффектом.


1.1. Описание и способы регистрации радиогеохимического эффекта

В скважинах, обводняющихся вследствие заводнения пластов закачиваемой или пластовой водой, с заколонной циркуляцией и работающих практически без воды, часто наблюдается повышение радиоактивного излучения, достигая максимального значения в интервале контакта нефти с водой. Отсюда такое название - «радиогеохимический эффект».

Возникновение гамма-аномалии на границе вода-нефть связано с повышением концентрации радиоактивных веществ в пласте, источником которых является неподвижная пористая среда.

Существует несколько способов регистрации радиогеохимического эффекта. Но наиболее точным является гамма-кароттаж скважин.

Гамма-кароттаж - это метод исследования геологического разреза буровой скважины по радиоактивному гамма излучению горных пород. Он заключается в следующем. В скважину опускается снаряд (рис.1), который заключает в себе приемник гамма-излучения. В качестве приемника используют счетчик Гейгера-Мюллера, который соединяется с пультом управления и питания. Счетчик представляет собой металлическую трубку, по оси которой натянута металлическая нить. Нить и трубка соединены с полюсами источника высокого напряжения. При попадании в трубку гамма-излучения в цепи трубки возникают импульсы тока, по которым можно судить об интенсивности излучения.

Рис. 1.

Общий вид прибора для исследования радиогеохимического эффекта.


По результатам исследований строится диаграмма зависимости интенсивности излучения от глубины. Диаграмму, зарегистрированную после определенного периода эксплуатации скважины, сравнивают с замером, полученным непосредственно после выхода скважины из бурения. По сопоставлению этих двух диаграмм определяются интервалы гамма-аномалий.

По результатам производственных измерений можно говорить об изменении естественной гамма-активности по разрезу скважины в том случае,

если показания в интервале неколлекторов возросли практически до уровня глин или более, а в интервале коллекторов (глинистые разности) – превышают уровень глин не менее чем на 30-50%.


1.2. Примеры экспериментального обнаружения
радиогеохимического эффекта


На рис.2 приведены результаты исследований по трем скважинам. В скважине 3890 в пласте песчаника 1740—1758 м водонефтяной контакт находится на глубине 1751,3м, интервал перфорации 1740-1744 мм. Пласт «а» (1723—1725 м) представлен алевролитом, вскрыт перфорацией, но в работе скважины участия он не принимает. Скважина вступила в работу с водой.


Рис. 2.

Повышение естественной гамма – активности в период эксплуатации скважины.

а – скв. 3890; б – скв.3892; в – скв. 3865.

1 – интервал повышения гамма – активности; 2 – интервал перфорации.

Обводненность продукции связана с поступлением воды из водонасыщеной части пласта «гд». В 1963 г. обводненность продукции резко возросла в результате начавшегося заводнения пласта закачиваемой водой. В пределах основной части пласта произошло резкое увеличение естественной гамма-активности; наиболее высокий уровень излучения зарегистрирован в интервале, вскрытом перфорацией (в 10 раз превышает уровень в глинах). Кроме того, увеличение гамма-активности отмечается и выше кровли этого пласта в интервале, представленном неколлектором (до глубины 1736 м). Возможно, несколько увеличилась гамма-активность и в интервале неработающего пласта «а». В скважине 3892 перфорацией вскрыт также пласт с подошвенной водой (водонефтяной контакт на глубине 1669 м). Скважина вступила в работу с водой. В 1964 г., судя по резкому увеличению обводненности продукции, началось заводнение коллектора пластовой водой. В заводняемом пласте, в основном в пределах интервала перфорации, отмечается увеличение гамма-активности до уровня глин. Кроме того, повышение гамма-активности произошло в интервале 1752—1753 м, который представлен неколлектором. В скважине 3865 работают два верхних пласта — «а» (1779—1786 м) и «б» (1789—1794 м). В 1965 г. пласт «а» начал заводняться закачиваемой водой. По замеру ГМ отложение солей радиобарита произошло в подошвенной части заводняемого пласта и в аргиллитах, залегающих над пластом «б».

При обводнении скважин закачиваемой водой гамма-аномалии в интервале заводняемого пласта, выделены по 55% скважин. В пределах коллекторов, заводняемых пластовой водой, образование гамма-аномалий отмечено по 75% скважин, т. е. в этом случае вероятность отложения солей радиобарита больше. Отсутствует какая-либо связь между вероятностью образования гамма-аномалии в заводняемом пласте и количеством отобранной воды или нефти из этого пласта. Величина аномалии также не зависит от количества отобранной воды или нефти. При заводнении нижних пластов повышение гамма - активности в интервале пласта отмечено в 70% случаев, а при заводнении верхних пластов – в 40% случаев. По нижним пластам отложение радиобарита обычно наблюдается в интервале мощностью не менее 4 – 6 м (см. рис.1, а и б). Если заводняется верхний пласт, то повышение показаний ГМ обычно отмечается в интервале мощностью до 2 м, который бывает приурочен к подошвенной части коллектора (рис.1, в).

При сопоставлении результатов измерений естественной гамма-активности по верхним нижним пластам создается впечатление, что основным источником изотопов радия являются пласты с подошвенной водой. По-видимому, на контакте нефти с водой содержание радия в воде существенно больше, чем в пластах, значительно удаленных от водонефтяного контакта. Например, на Арланском месторождении по диаграммам ГМ, зарегистрированным после выхода скважины из бурения, граница нефть-вода в пласте выделяется характерным максимумом интенсивности естественного гамма-излучения. Возможно, на этом место­рождении существовали наиболее -благоприятные условия для адсорбции радиоактивных-элементов на границе нефти с водой. Содержание изотопов радия в зоне водонефтяного контакта должно возрастать на участках интенсивного движения подошвенной воды. Например, на Павловской площади до начала разработки залежи скорость фильтрации воды по пласту была больше, чем на Абдрахмановской и Южно-Ромашкинской площадях. Этим можно объяснить, почему по скважинам Павловской площади вероятность появления гамма-аномалий при заводнении коллекторов больше и интенсивность их выше по сравнению с данными, полученными по Абдрахмановской и Южно-Ромашкинской площадям.

По скважинам, эксплуатирующим пласты с подошвенной водой и обводняющимся вследствие поступления воды по затрубному пространству или прискважинной зоне коллектора, вероятность образования гамма-аномалий составляет 50%, т. е. меньше, чем в случае заводнения коллекторов в интервале нижних пластов.

Повышение естественной гамма-активности часто наблюдается в интервалах, которые не являются источником поступления воды в скважину. Гамма-аномалии, не совпадающие по глубине с интервалом притока воды в скважину, выделены по 158 скважинам, причем 32 скважины ко времени проведения измерений работали без воды. Из числа-рассмотренных скважин в 47 гамма-аномалии приурочены к работающему пласту, из которого в скважину поступает безводная нефть. В 47 скважинах гамма-аномалии выделяются в интервале пластов, вскрытых перфорацией, но эти пласты в работе скважины не участвуют. В остальных 64 скважинах отложение радиобарита отмечается в интервале неколлекторов.Из приведенных данных следует, что в 70% случаев повышение гамма -активности отмечается в интервалах, из которых нет притока жидкости в скважину (неработающие пласты и интервалы неколлекторов). В 30% случаев из пласта поступала безводная нефть, но в пределах этого коллектора выделяется гамма-аномалия. Возможно, в подобных случаях работает не вся мощность пласта и в неработающих интервалах происходит отложение солей радиобарита.

Анализ образования гамма-аномалий после определенного периода эксплуатации скважин показывает, что отложение солей радиобарита не по всем скважинам происходит в интервале заводняемого коллектора и в 40% рассмотренных скважин заводняемые коллекторы не выделяются повышением естественной гамма-активности.


1.3. Выводы


На основе всего выше сказанного можно сделать следующие выводы:

1. Радиогеохимический эффект наблюдается на границе нефть-вода в пласте. Таким образом, в нефтяном пласте содержание радиоактивных веществ повышается.

2. Вероятность появления гамма-аномалии при заводнении нижних пластов больше, чем при заводнении верхних пластов.

3. Интенсивность гамма-аномалий зависит от скорости фильтрации воды по пласту.

4. Аномальная радиоактивность часто наблюдается в пластах, которые не являются источниками поступления воды в скважину. Образование этих гамма-аномалий, по-видимому, связано с адсорбцией бария и радия из жидкости, движущейся по стволу, на участках обсадной колонны, подвергшихся коррозии, и на цементе за колонной в интервале пластов, вскрытых перфорацией.

5. Радиогеохимический эффект можно применять при исследованиях в интервале пластов, не вскрытых перфорацией.

2. Основные уравнения


Содержанием этой главы являются основные понятия и уравнения, и их решения, необходимые разработки теории на основе математической модели.


2.1. Уравнение неразрывности


В замкнутой изолированной системе полная масса остается постоянной, т.е. она не возникает и не исчезает сама по себе.

Закон сохранения массы означает, что для любого с поверхностью изменение массы в должно равняться количеству массы протекающему через .

Плотностью в точке пространства называют предел отношения массы в элементарном объеме этому объему, охватывающему точку , при стягивании его в эту точку, т.е.:

,

(2.1)

Тогда

,

(2.2)

где m - интегральный параметр, удовлетворяющий закону аддитивности, -локальный параметр.

Выделим в пространстве неподвижную замкнутую поверхность ограничивающую объем . Каждой точке выделенного объема сопоставим вектор .

Рис.3.


Выберем на поверхности ориентированный элемент поверхности, где – вектор внешней нормали, - площадь выбранной площадки.

Тогда через элемент площади входит или выходит количество массы сплошной среды , где – вектор потока массы.

Через всю поверхность войдет или выйдет количество массы

(2.3)

Будем предполагать, что источники и стоки отсутствуют, тогда закон сохранения массы запишется в виде:

(2.4)

В (2.4) знак минус в правой части объясняется тем, что если образует с острый угол, т.е., то проходит через изнутри наружу, т.е. масса в убывает.

(2.5)

Уравнение (2.5) – уравнение неразрывности для массы в интегральной форме.

Проведем в первом интеграле (2.5) дифференцирование по как по параметру (поскольку не зависит от ), т.е. внесем производную под знак интеграла и заменим ее частной производную, поскольку подынтегральная функция зависит от переменной интегрирования, получим:

(2.6)

Второй интеграл в равенстве (2.5) преобразуем в объемный, воспользовавшись теоремой Остроградского-Гаусса. Получим

(2.7)

где



Подставим (2.6), (2.7) в (2.5), и объединяя интегралы получим

(2.8)

Учитывая в (2.8) произвольность объема , получаем

(2.9)

Уравнение (2.9)– уравнение неразрывности для массы в дифференциальной форме.


2.2. Закон Фика


Закон Фика необходим для описания диффузии растворенного(радиоактивного) вещества пропорциональной градиенту их плотности. Плотность радиоактивных примесей является функцией от химического потенциала

В уравнении (2.9) предыдущего параграфа вектор потока имеет вид

(*)

где – конвекционная компонента вектора потока, связанная с потоком вещества (массы). Для случая, когда движение массы происходит только за счет конвекции, поток записывается в виде

(2.10)

– диффузионная компонента, возникает при наличии в системе градиента концентрации. Для диффузионного компонента справедлив I Закон Фика:

(2.10*)

– коэффициент концентрационной диффузии, (далее будем опускать).

Диффузионный поток пропорционален градиенту плотности, взятому с обратным знаком.

Подставим (2.10) и (2.10*) в (*), получим

(2.11)

Подставим (2.11) в (2.9), получим

(2.12)

В (2.12) каждое слагаемое записали отдельно:



Преобразуем второе слагаемое в (2.12):

(2.13)

Во втором слагаемом в (2.13) осуществим круговую перестановку (знак не меняется, т.к. скалярное произведение).

Из выражения (2.13), получим

(2.14)

Преобразуем второе слагаемое в (2.12):


Условие не сжимаемости жидкости:

(2.15)

Подставив (2.14) и (2.15) в (2.12) получим

(2.16)

Если в (2.16) то получим уравнение диффузии (II Закон Фика):

(2.17)

2.3. Уравнение конвективной диффузии


Пусть имеется раствор с плотностью растворителя и плотностью растворенного вещества –, тогда плотность раствора запишется в виде

(2.18)

Запишем уравнение неразрывности для растворителя:

(2.19)

Диффузию не учитываем, потому что в жидкостях коэффициент диффузии мал.

Будем считать, что растворитель является несжимаемым, т.е. не зависит от пространственных координат и

(2.20)

Тогда из выражения (2.19), получим

(2.21)

Запишем уравнение неразрывности для раствора:

(2.22)

В (2.22) подставим (2.18), получим


Учитывая (2.20), (2.21) и независимость от пространственных координат, получим

(2.23)

Опустим штрих, предполагая в дальнейшем – плотность примеси.

(2.24)

Поясним в (2.24) значение каждого слагаемое:

Первое слагаемое описывает изменение массового содержания в рассматриваемой точке;

Второе слагаемое отвечает за конвекцию;

Третье слагаемое отвечает за диффузию.

Физический смысл уравнения (2.24) заключается в следующем: изменение концентрации, со временем, в рассматриваемой точке происходит за счет конвекции и диффузии.

На практике в (2.24) слагаемым можно пренебречь, в силу его малости.


2.4. Метод характеристик


Пусть движение несущей жидкости происходит вдоль оси , тогда уравнение без диффузионной конвекции запишется

.

(1)

Одномерное уравнение без диффузионной конвекции (или конвекционное уравнение).


Задача Коши для уравнения (1).

Требуется найти функцию , где и удовлетворяющую условиям: