Билеты по геометрии (11 класс)

Билет № 3


  1. Взаимное расположение прямой и плоскости в пространстве

  2. Объем призмы.

1.Три случая расположения прямой и плоскости.

1.Плоскость и прямая имеют одну оющую точку 

2.Прямая лежит в плоскости а значит имеет с ней 2 общие точки.

1.Пряммая и плоскость не имеют общих точек т.е. a


2.Теорема: Объем прямой призмы равен произведению площади основания на высоту.

Д-во: Рассмотрим правильную 3-угольную призму АВСА1В1С1с объемом V и высотой h.

Проведем такую высоту ∆АВС (ВD) кот. разделит этот ∆на 2 ∆. Поскольку ВВ1D разделяют данную призму на 2 призмы , основания кот является прямоугольный ∆ABD и ВСD. Плэтому объем V1 и V2 соответственно равны SABD ·h и SВСD ·h. По св-ву 20 объемов V=V1+V2 т.е V= SABD ·h+ SВСD ·h= (SABD+ SВСD) h. Т.о. V=SАВС·h

Д-во Возьмем произвольную прямую призму с высотой h и площадью основания S. Такую

призму можно разбить на прямые треугольные призмы с высотой h. Выразим объем каждой треугольной призмы по формуле (1) и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен произведению Sh. Теорема доказана.

Рассмотрим случай , когда призмая является частью параллелепип-ида. Диогональное сечение делит параллелепипед на 2 равные треугольные призмы. Так как Sпол = 1//2 ab то S=ab =>V= Sh ч.т.д.


Билет №5

  1. Перпендикуляр к наклонной плоскости(формулировки, примеры)

  2. Объем цилиндра.

1.Рассмотрим пл α и т А, не лежащую в этой плоскости. Проведем через т А прямую, к пл α, и обозначим букв H т пересечения этой прямой с пл α .Отрезок АН называется, проведенным из

т А к пл α, a т Н — основанием . Отметим в пл α какую-нибудь т М,отличную от Н, и проведем отр AM.Он называется наклонной, про-вед из т А к пл α , а т М основанием наклонной. Отрезок НМ наз-ывается проекцией наклонной на пл α. Сравним АН и наклон-ную AM: в прямоугольном ∆АМН сторона АН — катет, а сторона AM - гипотенуза, поэтому АН<АМ. Итак, , проведенный аз данной т к пл, меньше любой наклонной, проведенной из той же т к этой пл.

=> из всех расстояний от т А до различных т пл α наименьшим является расстояние до т H. Это расстояние, т. е: длина , проведенного из т А к пл α , называется расстоянием от т A до пл α

Замечаиия. 1. Если две плоскости параллельны, то все точки одной плоскости равноудалены от другой плоскости.


2. Теорема. Объем цилиндра равен произведению площади основания на высоту.

Д-во. Впишем в данный цилиндр Р радиуса r и высоты h правильную n-угольную призму Fn а в

эту призму впишем цилиндр Рп . Обозначим через V и Vn объемы цилиндров Р и Рп, через rп — радиус цилиндра Рп. Так как объем призмы Fn равен Snh, где Sn- площадь основания призмы, а цилиндр Р содержит призму Fn , кот в свою очередь , содержит цилиндр Рп , то Vnnhп цилиндра Рп стремиться к радиусу r цилиндра Р(rп=rcos180/nr при r→∞). Поэтому V цилиндра Рп стремиться к объему цилиндра Р: limVn=V. Из равенства (Vnnh, что

n→∞

limSnh=V. Но limSn=πr2 Т.о V=πr2h. т.к πr2=S , то получим V=Sоснh.

n→∞ n→∞


Билет № 6

  1. Расстояние между скрещивающимися прямыми (формулировки, примеры)

  2. Объем конуса.

Расстояние между одной из скрещивающихся прямых и плоскостью , проходящей через другую прямую параллельную первой , называется расстояни6е между скрещивающимися прямыми.


Если две прямые скрещиваются то через каждую из них проходит плоскость параллельная другой прямой , и при том только одна.


2 Теорема. Объем конуса равен одной трети произведения площади основания на высоту.

Д-во Рассмотрим конус с объемом V, радиусом основания R, высо-той h и вершиной т О . Введем ось Ох (ОМ). Произвольное сечение конуса пл. , к оси Ох , является кругом с центром в т М1 пересе-чения этой пл. с осью Ох. Обозначим радиус через R1 ,а S сечения через S(х) , где х – абсцисса т М1 . Из подобия прямоугольных ∆ ОМ1А1 и ОМА=> что

ОМ1

=

R1

, или

x =

R1

откуда

R=

xR так как

S(x)= R12

,то

S(x)=

R2

ОМ R h R h

h2

Применяя основную формулу для вычисления объемов тел при а=0, b=0, получим


h




h




h

V=

πR2

x2dx=

πR2

x2dx=

πR2

x3

=

1

πR2 h

h2

h2

h2

3

3


0




0




0

Площадь S основания конуса равна R2, поэтому V=1/3Sh.

Следствие. Объемом V усеченного конуса , высота кот равна h, а площадь оснований S и S1вычисляется по формуле V=1/3h(S·S1+√ S·S1).


Билет №7


  1. Угол между скрещивающимися прямыми

  2. Площадь боковой поверхности цилиндра.

  1. Пусть АВ и СD – скрещивающиеся прямые . Возьмем произвольную т. М1 пространства и проведем через нее прямые А1В1 и С1D1 , соответственно параллельн АВ и СD

Если ∠ между прямыми А1В1 и С1D1 =φ, то будем говорить , что ∠ между скрещивающимися прямыми АВ и СD=φ. Докажем теперь, что ∠ между прямыми не зависит от выбора т. М1 . Действительно , возьмем любую т. М2 и проведем прямые А2В2и С2D2 соответственно парал. АВ и СD Т.к А1В1∥ А2D2 , С1D1∥ C2D2 , то стороны углов с вершинами в т.М1и М2 попарно сонаправлены ( ∠А1М1С1 и ∠А2М2С2 , ∠А1М1D1 и∠А2М2D2 ) потому эти ∠ равны , ⇒ что ∠ между А2В2и С2D2 так же =φ. В качестве т М можно взять любую точку на одной из скрещивающихся прямых . Например на СD отметить т М и через нее провести А'B' параллельные АВ .Угол между прямыми A'B'и CD= φ


2. Терема: S боковой поверхности цилиндра равна произведению длинны окружности основания на высоту

Разрежем боковую поверхность по образующей АВ и развернем т.о , что все образующие оказались в одной плоскости α . В результате в пл α получится прямоугольник АВВ'А' . Стороны АВ и А'В' –два края разреза боковой поверхности цилиндра по образующей АВ . Это прямоугольник называется разверткой боковой поверхности цилиндра . основание АА' прямоугольника является разверткой окружности основания цилиндра , поэтому АА'=2πr , AB-h, где г- радиус цилиндра , h- его высота . за S бок цилиндра принято считать S её развертки . Т.к S прямоугольника АВВ'А'= АА'•ВА = 2πr•h то, для вычисления S бок цилиндра радиуса к и высоты h формула

S бок=2πrh


Билет № 9


1. Угол между плоскостями (формулировка, примеры)

2. Сложение векторов. Свойства сложения.


2. Возьмем 2 произвольных вектора a и b .Отложим от какой-нибудь т А вектор АВ равный а. Затем от т В отложим ВС=b . Вектор АС называется суммой векторов а и b : АС=a+b.

Это правило сложения векторов называется правилом треугольника. (по этому же правилу складываются и коллинеарные векторы , хотя при их сложении треугольника не получается) Сумма a+b не зависит от выбора т А, от которой при сложении откладывается вектор а. (если например заменить т А на т А1 то вектор АС заменится равным ему вектором А1С1Привило треугольника можно сформулировать и в другой форме: для любых точек А,В,и С имеет место равенство АВ+ВС=АС. Для сложения 2-ух неколлинеарных векторов можно пользоваться так же правилом параллелограмма. Для любых векторов а, b и с справедливы равенства: a+b=b+a (перемести-тельный з-н.);(a+b)+с=а+(b+с)(сочетательный з-н). Два нулевых вектора называются противоположными, если их длины равны нулю и они противоположно направлены.Вектором проти-оположным нулевому вектору , считается нулевой вектор. Вектр АВ является проти-воположным вектру ВА


Билет № 10


  1. Двугранный угол. Линейный угол двугранного угла.( формулировки , примеры)

  2. Умножение вектора на число . Св-ва произведения вектора на число.

1. Двугранным углом называют фигуру , образованную прямой а и 2-мя полуплоскостями с общей границей а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол , называются его гранями.

У двугранного угла 2 грани, отсюда и название. Прямая а – общая граница полуплоскостей- называется ребром двугранного угла. Для измерения двугранного угла отметим на ребре какую-нибудь т. и в каждой грани из этой точки проведем перпендикуляр к ребру. Образованный этими лучами угол называется линейный угол двугранного угла. ( АОВ ) ОАCD CDОВ, то плоскость АОВ к прямой СD. Двугранный угол имеет бесконечное множество линейных углов и они равны друг другу. Рассмотрим 2 линейных АОВ и А1О1В1 . Лучи ОА и О1А1 лежат в одной грани к ОО1, поэтому они сонаправлены. Точно так же сонаправлены ОВ и О1В1=> А1О1В1 =АОВ. Градусной мерой двугранного угла называется градусная мера его линейного угла . Он может быть прямым , острым, тупым ( 90, <90, >90)


2. Произведение ненулвого вектора а на число k называется такой вектор b , длинна которого равно ka , причем вектор a и b сонаправлены при k 0 и противоположно направлены при k<0. Произведением ненулевого вектора на любое число нулевой вектор. Произведение вектора а на число k обозначается так : ak. Для любого числа k и вектора а векторы а и ka коллинеарны. Из этого определения следует , что произведение любого вектора на число 0 есть нулевой вектор. Для любых векторов а и b и любых чмсел k, l справедливы равенства:

(kl)a= k(al) (сочетательный з-н)

k(a+b)=ka+kb(Ι-ый распределительный з-н)

(k+l)a=ka+la ( II-ой распределительный з-н)

отметим, что (-1)а является вектором противоположному вектору а, т.е. (-1)а = -а. Действитель-но, длины векторов (-1)а и а равны: (-1)a =(-1)а=а. Кроме того , если вектолр а ненулевой , то векторы (-1) а и а противоположно направлены. Точно так же, как в планеметрии, можно диказать, что если векторы а и b коллинеарны и а0 , то существует число k такое, что b= ka.


Билет № 11


  1. призма (формулировки , примеры)

  2. Скалярное произведение векторов.

1. Призма. Рассмотрим два равных многоугольника А1А2.., Ап и В1В2....Вп, расположенных в параллельных пл-тях а и р так, что отрезки А1В1 2В2, ..., АпВп, соединяющие соответственные вершины мн-

ков, параллельны.Каждый из п 4-хугольников A1A2B2B1, А2А3В3В2, .... AnA1B1Bn является п-ммом, так как имеет попарно параллельные про-тивоположные стороны. Мн-к, составленный из 2 равных мн-ков А1A2...An и В1В2...Вп, расположенных в параллельных пл-тях, и n п-ммов наз призмой Мн-ки A1A2....An и B1B2...Bn наз основаниями, а п-ммы-бокоеыми гранялш призмы.От резки А1В1, А2В2 ..., АпВп наз бо-коеыми ребрами призмы. Эти ребра как противрпрложные стороны п-ммов последовательно приложенных друг к другу, равны в парал-лельны.Призму с основаниями A1A2....An и B1B2...Bn обозначают-A1A2 ....Аn В1В2...Вn и называют п-угольной призмой.4-ехугольная призма- параллелепипед. , проведенный из какой-нибудь точки одного ос-нования к плоскости другого основания, называется высотой приз-мы. Если боковые ребра призмы к основаниям, то призма наз пря-мой, в противном случае –наклонной. Высота прямой призмы равна ее боковому ребру.Прямая при-зма называется пра-вильной, если ее основания — правильные мн-ки. У такой призмы все боковые грани -равные прямоугольники S полной поверхности. призмы называется сумма площадей всех ее граней, а S боковой поверхности призмы— сумма площа-дей ее боковых граней. Пло-щадь Sполн полной повер-хности выра-жается через площадь S6os боко-вой поверхности и пло-щадь Sосн ос-нования призмы форму Sполн = S6oк+ 2Sосн.


2. Скакалярным произведением 2-ух векторов называется произведение их длин на косинус угла между ними Скал-ое произведение векторов а и b обозначают так :аb . Т. о. ab=ab cos (ab). Скал-ое произведение вектора равно 0 тогда, когда эти векторы ; скал-ый квадрат вектора(т.е скал-ое призведение вектора на себя) = квадрату его длинны.. Скал-ое произведение 2-ух векто-ров можно вычислить, зная координаты этих векторов:скал-ое произведение векторов а{x1;y1;z1} и b{x2;y2;z2}выражается формулой: аb= x1x2+y1y2+z1z2. Косинус между ненулевыми вектора-ми а{x1;y1;z1} и b{x2;y2;z2} вычисляется формулой.

соs=

x1x2+y1y2+z1z2.

В самом деле, так как а b =аb, то

cos=

ab

√x12+y1І+z12 ⋅√ x22+y2І+z22

ab

Подставив сюда выражения для ab, аиb через координаты векторов а и b получим эту формулу. Для любых векторов а,b и c и любого числа k справедливы равенства:

10.а2 ) , причем а2>0 при а0

20.ab=ba(переместительный з-н)

30.(a+b)c=ac+bc(распределительный з-н)

40.k(ab)=(ka)b (сочетательный з-н)

Утверждения 1⁰-4⁰относятся и к планиметрии Нетрудно док-ть , что распределительный з-н имеет место для любого числа слагаемых( (a+b+c)d=ad+bd+cd.)


Билет № 12


  1. Прямая и правильная призма(формулировки примеры)

  2. Существование плоскости , проходящей через данную прямую и данную точку.


1.Если боковые ребра перпендикулярны основаниям, то призма нвзывается прямой, в противном случае наклонной. Высота прямой призмы равна ее боковому ребру.

Прямая призма называется правильной, если ее основания- правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники.


2. Теорема. Через прямую и не лежащую на ней точку проходит плоскость, и приом только одна .

Д-во. Рассмотрим пр а и не лежащую на ней т М. Отметим на прямой а 2 точки Р и Н Точки М,Р и Н не лежат на одной прямой поэтому согласно аксиоме А1 через эти 3 точки проходит пл . Т.к. 2 точки прямой РиН лежат в пл ., то по аксиоме А2 пл .проходит через прямую а.Единственность пл, проходящай через прямую а и т М, => из того, что любая пл., проходящая через пр а и т М, проходит через т М, Р и Н .=>, она совпадает с пл ., т.к по аксиоме А1через 3 точки проходит только одна плоскость.


Билет № 13


  1. Параллелепипед. Прямоугольный параллелепипед(формулировка примеры)

  2. Теорема о боковой поверхности призмы.

1. Прямоугольный параллелепипед. Параллелепипед называется прямоугольник, если его боковые ребра к основанию, а основания представляют собой прямоугольники: коробки,

ящики, комнаты к т. д. прямоугольный параллелепипед ABCD A1B1C1D1.Его основаниями служат прямоугольники ABCD и A1B1C1D1 a боковые ребра АА1, ВВ1, СС1 и DD1 к основаниям. Отсюда=>, что АА1АВ, т. е. боковая граyь АА1В1В — прямоуголь-ник. To же самое можно сказать и об остальных боковых гранях. Та-ким образом, мы обосновали следующее свойство прямоугольного параллелепипеда:

1°. В прямоугольном параллелепипеде все шесть граней прямоугольники. Полупл, в кот расположены смежные грани парал-

да, образуют двугранные углы, кот называются двугранными углами параллелепипеда.

2°. Все двугранные углы прямоугольного параллелепипеда прямые.

Длины трех ребер, имеющих общую вершину, назовем измерениями прямоугольного парал-да. Например, у парал­-да, можно взять длины ребер АВ, AD и АА1.Длины смежных сторон можно назвать измерениями прямоугольника и поэтому можно сказать, что квадрат диагонали, прямоугольника равен сумме квадратов двух его измерений.


2. Теорема: S боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Д-во. Боковая поверхность прямой призмы – прямоугольники , основания которых- стороны основания призмы, а высота равна h призмы. S боковой поверхности призмы равна сумме произведений указанных прямоугольников, т.е. равна сумме произведений сторон основания нв высоту h. Вынося множитель h за скобки получим в скобках сумму сторон основания призмы, т.е его периметр P. Итак Sбок=Ph


S=AB•h+BC•h+CA•h=h(AB+BC+CA)=Ph


Билет № 14


  1. Пирамида(формулировка , примеры)

  2. Существование прямой, параллельной данной прямой и проходящей через данную точку.

1. Пирамида. Рассмотрим многоугольник А1А2…Аn и точку Р не лежащую в плоскости этого многоугольника . Соединив т. Р отрезками с вершинами многоугольника, получим n треугольников РА1А1, РА2А3…,РаnА1.

Многоугольник, составленный из n –угольника А1А2…Аn и n тре-угольников , называется пирамидой. Многоугольник А1А2…Аn назы-вается основанием, а треугольники- боковыми гранями пирамиды. Т.Р называется вершиной пирамиды , а отрезки РА1,РА2, …, РАn – её боковыми ребрами . Пирамиду с основанием А1А2,…Аn и вершиной Р обозначают так: РА1А2…Аn –и называют n –угольной пирамидой. Треугольная пирамида называется тетраэдр. Перпендикуляр , проведенный из вершины пирамиды к плоскости основания , называют высотой пирамиды (РН) Площадью полной поверхности пирамиды называют сумму площадей её граней , а площадью боковой поверх-ности – сумму площадей её боковых граней


2. Т е о р е м а. Через любдю точку пространства, не лежащую на данной прямой, проходит прямая, параллелькая данной, и притом только одна.

Д-во. Рассмотрим прямую a и т М, не лежащую на этой прямой. Через прямую a и т М проходит

пл, и притом только одна . Обозначим эту плоскость буквой α. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости α. Ho в плоскости α, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b единственная прямая, проходящая через т М параллельно пря­мой а. Теорема доказана.


Билет № 15


  1. Цилиндр (формулировки и примеры)

  2. Признак параллельных прямых.

1. Цилиндр. Рассмотрим две параллельные плоскости α и β и окружность L с центром О радиуса r , расположенную в пл α. Отрезки прямых заключенных между плоскостями образуют цилиндрическую поверхность. Сами отрезки называются образующими цилиндрической поверхности По построению концов образующих расположенных в пл β заполним окружность

L1. Тело ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1 , называется цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги - основаниями цилиндра . Образующие цилиндрической поверхности называются образующими цилиндра , прямая ОО1- осью цилиндра.

Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон. Сечение цилиндра , проходящее через ось , представляет собой прямоугольник , две стороны которого образующие , а 2 другие –диаметры оснований цилиндра , такое сечение называется осевым. Если секущая плоскость ⊥ к оси цилиндра , то сечение является кругом. Цилиндры так же могут быть и наклонными или иметь в своем основании параболу .


Параллельность прямых а и b обозначается так: а||b. Докажем теорему о параллельных прямых.

Т е о р е м а. Через любдю точку пространства, не лежащую на данной прямой, проходит прямая, параллелькая данной, и притом только одна.

Д-во. Рассмотрим прямую a и т М, не лежащую на этой прямой. Через прямую a и т М проходит

пл, и притом только одна . Обозначим эту плоскость буквой α. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости α. Ho в плоскости α, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b единственная прямая, проходящая через т М параллельно пря­мой а. Теорема доказана.


Билет №16


  1. Конус (формулировки и примеры)

  2. Признак параллельности прямой и плоскости

1.Конус. Рассмотрим окружность L с центром О и прямую ОР , перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим с отрезом в т. Р Поверхность, образованная этими отрезками называется конической поверхностью

а сами отрезки – образующими конической поверхности. Тело, ограниченное конической поверхностью и круг-ом с границей L, называется конусом .Коническая по-верх называется боковой поверхностью конуса, а круг - снованием конуса . Т.Р называется вершиной конуса , а образующие конической поверхности – образующими конуса. Все образующие равны друг другу . ОР , прохо-дящая через центр основания и вершину , называется Осью конуса . Ось конуса ⊥ к плоскости основания. Отрезок ОР называется высотой конуса.

Конус можно получить и вращением прямоуголь-ным треугольником вокруг одного из его катетов. При этом боковая поверхность образуется с помо-щью гипотенузы. Рассмотрим сечения конуса. Если секущая ось проходит через ось , то сечение пред-ставляет собой треугольник , и называется осевым сечением. Если секущая плоскость ⊥ к оси ОР конуса, о сечене пред-ставляет собой круг с центром в т.О1 , расположенным на оси конуса. R1 этого круга равен РО1/РО r , где r- радиус основания конуса , что легко усмотреть из подобия △РОМ∾△РО1М1


2.Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Теорема. Если прямая , не лежащая в даннойц плоскости, палаллльна какой-нибудь прямой , лежащей в этой плоскости, то она параллнльна данной плоскости.

Д-во. Рассмотрим пл.αи 2║прямые a и b , расположенные так, что прямая b лежит в пл α, а прямая a не лежит в этой пл. Докажем, что α║a. Допустим, что это не так, тогда прямая a пересекает пл α , а значит по лемме о пересечении пл параллельными прямыми пр b так же пересекает пл α . Но это невозможно , так как пр b лежит в пл α. Итак пр a не пересекает пл α, поэтому она ║этой плоскости.


Билет № 17


  1. Сфера, шар( формулировки, примеры)

  2. Признак параллельности плоскостей.

Определение. Сферой называется поверхность, состоящая из всех точен. пространства, расположенных на данном расстоянии or данной точки

Данная точка называется центром сферы (т О), а данное расстояние — радиусом сферы. Радиус сфе­ры часто обозначают буквой R Люб-ой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы.Отрезок, соединяю­щий две точки сферы и проходящий через ее центр, называет­ся диаметром сферы. Очеви-дно, диаметр сферы равен 2R Отметим, что сфера может быть полу-чена вращением полуокружности вокруг ее диаметра Тело, ограни-ченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Очевидно, шар радиуса R с центром О содержит все точки пространства, кот. Расположены от точки О на расстоянии, не превышающем H (вклю-чая и точку