Проект ТП 35/10 кВ "Город" ИРЭС ООО "БашРЭС-Стерлитамак" для электроснабжения потребителей с разработкой защитного заземления
(2.58)Находим активную высоту молниеотвода hа ,м,
(2.59)
Рассчитываем угол защиты , град, (между вертикалью и образующей)
(2.60)
В масштабе изображаем зону защиты (Рисунок 2.6)
Рисунок 2.6 - Зона защиты двойного стержневого молниеотвода
Определяем габаритные размеры защищаемого объекта в зоне молниезащиты.
Ширина В=30 м, высота h=4,5 м.
Находим угол , град,
(2.61)
Определяем максимально возможную длину объекта Аmax , м, при которой он находится в зоне молниезащиты
(2.62)
Таким образом, А<Аmax (35 м<41,36 м) и все остальные параметры молниезащиты подходят для данных габаритов подстанции, значит, объект находится в зоне молниезащиты.
Изображаем в масштабе подстанцию в зоне молниезащиты (Рисунок 2.7).
Рисунок 2.7 - Зона защиты двойного стержневого молниеотвода и защищаемый объект
Следовательно, в данном дипломном проекте применяем для молниезащиты два стержневых молниеотвода высотой 20 м.
2.14 Расчёт заземляющих устройств
Заземление - преднамеренное гальваническое соединение металлических частей электроустановки с заземляющим устройством.
Защитное заземление - заземление частей электроустановки с целью обеспечения электробезопасности.
Заземляющее устройство - совокупность заземлителя и заземляющих проводников.
Заземлителем называют металлический проводник или группу проводников, находящихся в соприкосновении с землей. Различают естественные и искусственные заземлители.
Естественные заземлители - различные конструкции и устройства, которые по своим свойствам могут одновременно выполнять функции заземлителей: водопроводные и другие металлические трубопроводы (кроме трубопроводов горючих или взрывчатых жидкостей и газов, а также трубопроводов, покрытых изоляцией от коррозии), металлические и железобетонные конструкции зданий и сооружений, имеющие надежное соединение с землей.
Под искусственными заземлителями понимают закладываемые в землю металлические электроды, специально предназначенные для устройства заземлений. В качестве искусственных заземлителей применяют: для вертикального погружения в землю стальные стержни диаметром 12-16 мм, угловую сталь с толщиной стенки не менее 4 мм или стальные трубы (некондиционные) с толщиной стенки не менее 3,5 мм; для горизонтальной укладки - стальные полосы толщиной не менее 4 мм или круглую сталь диаметром 6мм.
Заземляющие проводники служат для присоединения частей электроустановки с заземлителем.
В зависимости от расположения заземлителей относительно заземляющего электрического оборудования различают выносное и контурное заземление.
При выносном заземлители размещают в стороне от заземляющего оборудования и в этом случае корпуса оборудования находятся вне зоне растекания токов в землю.
При контурном (применяется обычно в ОРУ) заземлители располагают вокруг заземляющего оборудования, вблизи от него.
В зависимости от напряжения, на которое рассчитывается заземление и вида присоединения нейтрали сопротивление заземляющего устройства может быть:
а) не более 4 Ом в электроустановках напряжением до 1000 В с изолированной нейтралью;
б) не более 2; 4; 8 Ом в электроустановках напряжением, равным 660; 380; 220 В с глухозаземлённой нейтралью;
в) не более 0,5 Ом в электроустановках напряжением выше 1000 В с глухозаземлённой нейтралью;
г) в электроустановках напряжением выше 1000 В с изолированной нейтралью сопротивление Rз , Ом, должно удовлетворять условию:
, (2.63)
где Uз =250 В, если заземляющее устройство используется
только для установок напряжением выше 1000 В;
Uз =125 В, если заземляющее устройство одновременно ис-
пользуется и для установок напряжением до 1000 В;
Iз - расчетный ток замыкания на землю, А.
Расчет заземляющих устройств сводится к расчету заземлителя.
В качестве заземлителя выбираем в дипломном проекте прутковые электроды. Выбираем грунт - глина.
Коэффициент повышения сопротивления для глины [6, с.260, таб.7.3].
Рассчитываем удельное сопротивление грунта , Ом-м,
, (2.64)
где - измеренное значение удельного сопротивления грун-
та, Ом-м; для глины [6, с.257];
- коэффициент повышения удельного сопротивления; для
глины [6, с.260, таб.7.3].
Находим сопротивление одиночного заземлиеля R0 , Ом,
(2.65)
Определяем ток однофазного короткого замыкания на землю Iз ,А,
(2.66)
где U - номинальное напряжение, кВ;
lв - протяженность воздушных линий, км;
lк - протяженность воздушных линий, км..
Определяем сопротивление заземляющего устройства Rз , Ом, при условии, что оно является общим для напряжений 35кВ, 10кВ и 0,4кВ по (2.63)
Выбираем Rз=4Ом согласно ПУЭ для напряжения 0,4кВ.
Находим число n, шт, электродов
, (2.67)
где - коэффициент экранирования; [4, с.257, таб.7,1]
Таким образом, заземляющее устройство состоит из пяти прутковых электродов.
2.15 Спецификация на электрооборудование и материалы
Таблица 2.11 - Спецификация на электрооборудование и материалы
Номер обор | Наименование | Тип | Кол-во |
1 | Силовой трансформатор | ТМН 4000/35 | 2 |
2 | Трансформатор тока 35 кВ | ТВ-35-100/5 | 4 |
3 | Разъединитель 35 кВ | РНДЗ-2-35/1000 | 4 |
4 | Трансформатор напряжения 35 кВ | НОМ-35-66 | 2 |
5 | Вакуумный выключатель 35 кВ | ВБГЭ-35-12,5/630 | 2 |
6 | ОПН 35кВ | ОПН-35 | 2 |
7 | Провод воздушный | АС-70, l=10+25 км | 1 |
8 | Вакуумный выключатель 10 кВ | ВВ/ТЕL-10-20/800 | 11 |
9 | Трансформатор тока 10 кВ | ТОЛ-10 | 11 |
10 | Трансформатор напряжения 10 кВ | НАМИ-10 | 2 |
11 | Кабель силовой | ААБ-10-3х50, l=4,2км | 6 |
12 | Шины алюминиевые | 50х6, l=15 м | 2 |
13 | Изоляторы | ОНШ-10-5 | 30 |
14 | Конденсаторная установка | УКЛ-6/10-750 | 2 |
15 | Предохранитель 10кВ | ПКТН - 10 | 4 |
16 | ОПН 10 кВ | ОПН-10 | 4 |
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1 Н.А. Афанасьев, М.А. Юсипов. Система технического обслуживания и ремонта оборудования энергохозяйств промышленных предприятий. М., Энергоатомиздат, 1989.
2 К.И. Дорошев. Комплектные распределительные устройства 6-35 кВ. М., Энергоиздат, 1982.
3 А.Ф. Зюзин, Н.З. Поконов, М.В. Антонов. Монтаж, эксплуатация и ремонт электрооборудования промышленных предприятий и установок. М., Высшая школа, 1986.
4 Л.Л. Коновалова, Л.Д. Рожкова. Электроснабжение промышленных предприятий и установок. М., Энергоатомиздат, 1989.
5 Е.А. Конюхова. Электроснабжение объектов. М., Высшая школа, 2001.
6 Б.Ю. Липкин. Электроснабжение промышленных предприятий и установок. М., Высшая школа, 1990.
7 Б.Г. Меньшов. Электрооборудование нефтяной промышленности. М., Недра, 1990.
8 Б.Н. Неклепаев. Электрическая часть электростанций и подстанций. М., Энергоатомиздат, 1989.
9 Прайс-листы заводов-изготовителей.
10 А.А. Фёдоров. Справочник по электроснабжению и электрооборудованию, том1. М., Энергоатомиздат, 1986.
11 А.А. Фёдоров, Л.Е. Старкова. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий. М., Энергоатомиздат, 1986.