Электроконтактная наплавка

ППЛ также снижает прочность соединения.

ППЛ при подготовке и подаче под наварку требует осторожного обращения, так как при изгибе до радиуса кривизны < 10 мм и растяжении со средним напряжением sр = 1–3 МПа она растрескивается и разрушается. Вместе с тем, ППЛ легко режется ножом, может содержать любую композицию ПМ и при этом может быть изготовлена с использованием комплекта простых приспособлений.

Серьезной проблемой при наварке ПМ и ППЛ является низкая надежность работы узлов сварочных роликов, подвижные части которых заклинивают на осях от попадания в зазор между ними частиц порошковых материалов. Поэтому узлы сварочных роликов должны быть защищены от попадания частиц порошков в их опоры скольжения. При использовании сухих ПМ дополнительно необходима герметичная система внутреннего охлаждения.

Другим путем связывания частиц ПМ в компактное тело является изготовление порошковых спеченных лент (ПСЛ). При их спекании в печах в течение нескольких часов между контактирующими участками соседних частиц протекают диффузионные процессы, поэтому границы между частицами становятся размытыми. Такой характер границ остается и в наплавленном слое. Пористость ПСЛ составляет 0,5–20%. Пластичность ПСЛ зависит от состава, она снижается с повышением содержания упрочняющих порошковых материалов. При намотке на деталь или установке в полость детали малопластичные ПСЛ растрескиваются. Такие ПСЛ необходимо многократно вальцевать, постепенно приближая радиус гибки к радиусу кривизны поверхности детали, размещать их на поверхности детали как втулки, после чего прихватывать и производить наварку.

Нагрев ПСЛ при наварке и формирование наплавленного слоя происходят так же, как и в случае использования СЛ. Отличие состоит в том, что ПСЛ пористые и поэтому при обжатии имеют заметную усадку, пропорциональную пористости, которая после наварки снижается. При наварке присадочные материалы с материалом детали не перемешиваются.


Недостатки способа ЭКНП и возможности их устранения


Широкое внедрение способа электроконтактного нанесения порошковых материалов сдерживается рядом существенных недостатков [5].

Как известно, дальнейшее увеличение износостойкости материалов при одновременном сокращении расхода легирующих элементов возможно только при широком использовании композиционных материалов, твердая составляющая которых является диэлектриком. Однако по результатам исследований Радомысельского И. Д. и Рыморова Е. В. [8] известно, что критическая концентрация компонентов-диэлектриков не превышает 1-2% от массы. При превышении указанных пределов происходит нарушение стабильности электроконтактного процесса в результате разделения токопроводящих частиц порошкового материала частицами с высоким электрическим сопротивлением. Тем не менее, на практике для обеспечения требуемых эксплуатационных показателей покрытия должны содержать 5-10% и более функциональных наполнителей. Практически нанести покрытия этих составов электроконтактным методом невозможно.

Меры, применяемые в настоящее время для устранения указанного недостатка малоэффективны. Введение высоко- электропроводных компонентов не решает проблемы. Даже введение в шихту меди (до 8% от массы) не позволяет снизить электросопротивление порошка. Регулируя соотношение размеров частиц наполнителя и матрицы можно увеличить содержание диэлектриков в шихте без повышения его критического начального электросопротивления. Однако такое повышение (в среднем до 8% от массы) не позволяет значительно увеличить износостойкость порошкового материала.

Пробой неэлектропроводного порошкового слоя током высокого напряжения приводит к получению высокопористого материала и к необходимости последующей пластической деформации с целью уплотнения покрытия. Использование ультразвуковых и магнитных колебаний, применение электродинамического удара позволяют решать конкретные задачи и значительно усложняют применяемое оборудование.

Следующим существенным недостатком ЭКН порошкового материала является быстрый износ роликов-электродов электроконтактных установок. С помощью ролика-электрода прикладывается давление к уплотняемому и припекаемому порошковому слою. Так как твердые частиц износостойкого материала находятся в непосредственном контакте с роликом-электродом происходит быстрый абразивный износ последнего.

Для устранения указанного недостатка, а также для предотвращения налипания порошка на контактную поверхность роликового электрода между последним и порошковым слоем вводят технологическую латунную ленту толщиной 0,1-0,2 мм, ограничивают давление 30-50 MПa, используют строго заданные режимы наплавки, выполняют электрод из легированной высокопрочной стали. Все эти способы обладают ограниченными технологическими возможностями и резко снижают эффективность электроконтактного способа нанесения покрытий.

При ЭКН возникают трудности с применением ферромагнитных порошков. В результате взаимодействия электрического тока, проходящего по детали, и его магнитного поля с током, проходящим через электрод и слой порошка, и его магнитным полем, происходит выброс ферромагнитного порошка из зоны уплотнения и спекания, в результате чего покрытие формируется с большим количеством пор, наплывами, а коэффициент использования порошка не превышает 0,8. Для устранения подобного явления применяют постоянный электрический ток, используют порошковые материалы в виде паст, предварительное плазменное или газопламенное напыление, применение порошкового материала, заключенного в полиэтиленовую оболочку. Последний способ позволяет также повысить стойкость электрода, предотвращает окисление порошка на первом этапе процесса, дает возможность точно дозировать количество порошка.

С целью повышения прочности соединения порошкового материала с поверхностью детали применяются следующие технологические способы.

Осуществляют двухстадийное формирование и нагрев припекаемого покрытия. При этом первоначально к слою прикладывают удельное давление в пределах 0,05–0,15 МН/м, которое частично уплотняет порошок не вызывая деформации его микровыступов и разрушения окисных пленок. В результате нагрева образуется слой большой пористостью (до 30%). Вторая стадия начинается тогда, когда температура порошка достигает 0,8 Тпл и характеризуется пропусканием тока плотностью 0,25–0,5 кА/мм2 и приложением удельного давления, не превышающего 0,65 МН/м. Получают высокоплотные покрытия с прочностью сцепления 180–200 МПа. Применяют также нанесение покрытия в три стадии, последующую горячую обкатку, специальную подготовку поверхности, нанесение подслоя.

Все эти способы обладают определенными преимуществами и позволяют решать конкретные технологические задачи. Наиболее широкими возможностями обладает способ, основанный на применении порошкового материала, заключенного в полимерную оболочку. Однако полимерная оболочка не является электропроводной, поэтому с целью обеспечения возможности электроконтактной наплавки оболочку армируют частицами шихты. Это несколько снижает стойкость электродов контактных установок. Полимерная оболочка не обладает достаточной прочностью и не предотвращает выдавливание порошка из зоны деформации. Остатки оболочки загрязняют ролик-электрод. Невозможно предварительное изготовление порошкового материала методами порошковой металлургии. Все эти недостатки должны устраняться при применении металлической оболочки. Применение металлической оболочки при формировании порошковых материалов является известным приемом в различных технологических процессах.


Наплавка порошковых материалов в металлической оболочке.


Сущность предлагаемого способа заключается в том, что при помещении порошка в оболочку исключается его контакт с электродом, следовательно, стойкость электрода должна повыситься. Появляется возможность предварительного изготовления порошкового материала для электроконтактной наплавки: его можно уплотнять (протяжкой, прокаткой) или спекать, причем оболочка предохраняет порошок от окисления. Наличие металлической оболочки позволит увеличить количество компонентов с высоким электрическим сопротивлением, так как в этом случае ток протекает по оболочке и нагревает ее до температуры перехода в пластическое состояние; при определенном усилии, прилагаемом к электроду, происходит соединение оболочки с основным металлом, а порошковый материал нагревается теплом, поступающим от оболочки [4]. На рис. 12 показана предлагаемая схема процесса электроконтактной наплавки.


Рис. 12. Схема процесса электроконтактной наплавки порошкового материала, заключенного в металлическую оболочку: 1 – электроды электроконтактной установки; 2 – металлическая оболочка; 3 – порошковый материал; 4 – наплавляемая заготовка; 5 – источник питания


Для подтверждения выдвинутых положений были выполнены следующие опыты.

Производили наплавку порошковым материалом без оболочки и в оболочке. Наплавка порошка без оболочки осуществлялась известным способом. Для наплавки по предлагаемому способу шихту, состоящую из порошков сплава ПГ-С1 и углеродистого феррохрома ФХ800, засыпали в оболочку (имевшую вид трубки диаметром 5 мм) из стали 08кп. Полученную заготовку протягивали до диаметра 4 мм, продували аргоном, герметизировали и вновь протягивали – до диаметра 3 мм. Затем производили электроконтактную наплавку порошкового материала, заключенного в металлическую оболочку, на пластину из стали СтЗ толщиной 10 мм. Исследовали зависимость прочности сцепления от параметров режима (тока Iсв, времени протекания импульса тока tи, длительности паузы между импульсами tп, усилия па электроде Р). Прочность сцепления покрытия с основным металлом определяли путем отрыва штифта приложенной силой по методике [7].

При оптимальных режимах наплавки прочность сцепления порошкового материала, заключенного в металлическую оболочку, в 2–2,5 раза выше, чем порошка без оболочки. При увеличении усилия на электроде в исследованных пределах прочность сцепления покрытия с деталью уменьшается. Это объясняется снижением температуры нагрева в зоне соединения, связанным с деформацией металлической оболочки до включения импульса электрического тока: при этом увеличивается площадь контакта между оболочкой и деталью, уменьшаются электрическое сопротивление контакта и плотность тока.

Проведенные сравнительные испытания с целью определения физико-механических свойств покрытий, полученных при использовании порошковых материалов, заключенных в оболочку и без нее (табл. 2), показали, что в первом случае, вследствие значительного снижения пористости слоя, повышается его твердость и износостойкость. Уменьшению пористости способствует наличие оболочки, которая позволяет предварительно уплотнять порошок в процессе протяжки и, кроме того, создает благоприятное напряженное состояние при наплавке, близкое к состоянию всестороннего сжатия. Значительно возрастает срок службы (стойкость) электродов электроконтактной установки. При наплавке порошка ПГ–С1+ФХ800 в оболочке стойкость электрода из бронзы типа БрХ составляет 200…250 м до переточки против 30...40 м при наплавке порошка того же состава без оболочки. Следовательно, применение металлической оболочки при электроконтактной наплавке с применением известных материалов дает следующие преимущества:

повышаются физико–механические свойства наплавленного слоя в результате снижения пористости;

увеличивается прочность сцепления покрытия с основой;

предотвращается окисление порошкового материала;

создается благоприятное напряженное состояние, близкое к всестороннему сжатию;

увеличивается срок службы электродов;

стабилизируется толщина наплавленного слоя благодаря точной дозировке порошкового материала;

появляется возможность снижения напряжений в наплавленном слое, так как оболочка является своеобразной мягкой прослойкой между основным металлом и покрытием.

С целью определения возможности увеличения количества неэлектропроводных компонентов в шихте было изучено температурное поле при электроконтактной наплавке порошка ПГ–С1+ФХ800 (с различным количеством карбида бора), заключенного в металлическую оболочку.


Таблица 2. Сравнительная характеристика физико–механических свойств покрытий

Наличие оболочки Материал покрытия e HRC Пористость,% sсц,, МПа

Нет


Есть

ПГ–С1

ПГ–С1+50% ФХ800


ПГ–С1

ПГ–С1+30% ФХ800

ПГ–С1+50% ФХ800

1,0

2,5


1,5

2,9

3,5

50

60


54

59

61

5…7

8…10


1…2

1…2

2…3

120…140

120…140


280…320

300…320

300…320

Примечание. Здесь e – относительная износостойкость.


Рис. 13. Температурное поле в начальный (а) и конечный (б) моменты наплавки порошка, заключенного в металлическую оболочку: 1 – электрод электроконтактной установки; 2 – оболочка; 3 – порошковый материал; 4 – основной металл; 5 – источник питания; · – места размещения термопар


Температура измерялась с помощью хромель–алюмелевых и платино–платинородиевых термопар. Места расположения термопар показаны на рис. 13. Градуировка термопар проводилась по точке кипения воды (373 К) и температуре плавления свинца (602 К). Регистрация сигнала осуществлялась шлейфовым осциллографом К12–22.

Как видно из рис. 13, в начальный момент электроконтактной наплавки температура в срединной области порошкового материала значительно ниже, чем температура оболочки. Это объясняется низкой электрической проводимостью порошка: практически в данный момент весь ток протекает по металлической оболочке. Однако нагрев порошка теплом, получаемым от оболочки, и уплотнение его усилием, приложенным к электроду, приводит к снижению электрического сопротивления порошкового слоя, его дальнейшему нагреву и уплотнению за счет пластической деформации частиц; происходит выравнивание температуры по сечению порошкового сердечника. Дальнейший нагрев приводит к перегреву последнего, что при неправильно выбранном режиме (большом токе или увеличенной длительности импульса) может вызвать нарушение стабильности электроконтактного процесса, расплавление порошкового материала, прожог и выплеск расплавленного металла.

В табл. 3 приведены физико–механические свойства наплавленного слоя. Увеличение количества карбида бора до 20% приводит к резкому возрастанию пористости, снижению пластических свойств покрытия, а также износостойкости вследствие ухудшения прочности сцепления между частицами порошкового материала (о чем свидетельствует выкрашивание твердой составляющей композиционного слоя при испытаниях на износостойкость).


Таблица 3. Физико-механические свойства наплавленного слоя при различном содержании карбида бора

Материал покрытия e Пористость,% аН, МДж/м2 Характеристика поверхности

ПС1 (ПГ–С1+50% ФХ800)

ПС1+5% В4С

ПС1+10% В4С

ПС1+20% В4С

ПС1+30% В4С


1,0

1,3

1,6

1,4

0,5

2…3

3…5

3…5

5…10

10…12

0,59

0,54

0,50

0,42

0,26

Чистая

Чистая

Чистая

Видны поры

Есть трещины

Очевидно, при введении более 15% карбида бора, получаемый порошковый материал характеризуется высоким электрическим сопротивлением и низкой теплопроводностью и не успевает прогреться за время наплавки, поэтому плохо уплотняется и спекается. Однако наличие оболочки позволило несколько увеличить критическое количество компонентов-диэлектриков (до 15%), при этом электроконтактный процесс сохраняет стабильность на всем протяжении наплавки.


Испытание порошковых материалов.


Методика проведения испытаний порошкового материала на растяжение и сжатие


Целью этих испытаний является определенно предельных напряжений растяжения и сжатия материала напрессованного слоя. В качестве испытуемого материала использовался материал МК-5. Главным вопросом проведения любых испытаний является вопрос, связанный с изготовлением образцов для испытаний. Поскольку испытуемый материал в его неспеченном состоянии отличается низкой прочностью, то вопрос об изготовлении его образцов оказался достаточно сложным. Образцы для, испытаний как на растяжение, так и на сжатие изготавливались в жесткой пресс-форме. Образцы для испытания на сжатие изготавливались путем уплотнения порошкового материала (рисунок 2.25) в полости матрицы. Давление прессования прикладывалось к верхнему пуансону. Выпрессовка образца из полости матрицы осуществлялась с помощью нижнего пуансона. После выпрессовки образцы имели диаметр 25 мм и высоту 25 мм. Необходимая плотность материала образцов достигалась варьированием высотой засыпки порошка Геометрические параметры изготовленных образцов удовлетворяли требованиям, предъявляемым к образцам для испытания порошковых материалов на сжатие /I8/. Испытания изготовленных образцов на сжатие производились

на испытательной машине ИМЧ-30. Предельное напряжение сжатия определялось по силоизмерителю машины в момент разрушения образца. С целью снижения влияния трения между плитами испытательной машины и торцевой поверхностью образца на точность результатов испытаний, торцевые поверхности образца покрывались слоем парафина. Образцы для испытаний на растяжение изготавливались по схеме, изображенной на рисунке 2.27, путом уплотнения порошкового материала в полости матрицы 2, между верхним 3 и нижним 4




Схема изготовления образцов Схема испытания образцов насжа тие

для испытаний на сжатиетие


Схема изготовления образцов для испытания на растяжение.

отрывными элементами. Отрывные элементы изготавливались из компактной стали. Наличие отрывных элементов необходимо для размещения образца в захватах испытательного устройства. Соединение их с испытуемым порошковым материалом осуществлялось с помощью слоя мягкого покрытия, предварительно нанесенного на поверхность отрывного элемента. В качество покрытия использовался слой оловянисто-свинцового припоя ПОС-ІО толщиной 0,2-0,4 мм. Извлечение образца S3 полости матрицы осуществлялось с помощью нижнего пуансона 5. Необходимая плотность материала порошковой части образца достигалась варьированием высотой засыпки порошка H. Геометрические параметры образцов для испытаний порошкового материала на растяжение удовлетворяют международным нормам /39,

Разрыв по слою порошкового материала при испытании образца на растяжение говорит о высоком качестве соединения отрывных элементов с порошковым материалом.

Техническая новизна способа изготовления таких образцов подтверждена положительным решением по заявке на изобретение 403ІІ72/23Ч033766) от 27,05.87 г, Низкие механические свойства неспеченного порошкового материала не позволили применить для испытаний имеющуюся в наличии испытательную технику, поскольку она обладает относительно высокой скоростью нагружения и низкой чувствительностью силоизмерительных приборов.

Поэтому на базе ручного механического пресса Ж-30 (рисунок 2.29) была разработана и изготовлена установка для испытания на растяжение полученных образцов, Червячный механизм перемещения нижней траверсы обеспечивал любую, как угодно малую скорость нагружения образца 2, который закреплялся в захватах 3. Растягивающая нагрузка фиксировалась динамометром чаоового типа 4, а соосность ее приложения обеспечивалась шаровыми шарнирами 5.



Рисунок 2.29

Установка для испытания порошковых материалов на растяжение.

СПИСОК ССЫЛОК


А. М. Михед, инж., В. П. Черныш, д–р техн. наук (Национ. техн. ун–т Украины «КПИ») Восстановление размеров и свойств чугунных цилиндрических деталей электроконтактной наваркой проволок //Автоматическая сварка. – 2000. – №3. – с. 42 – 45.

С. Ф. Андронов Электроконтактная шовная наварка металлических лент и порошков //Сварочное производство. – 2001. – №12. – с. 25 – 26.

С. Ф. Андронов, Б. М. Гарипов Электроконтактная наплавка порошково-полимерных материалов //Сварочное производство. – 2000. – №5. – с. 6 – 7.

В. М. Карпенко, В. Т. Катренко, кандидаты техн. наук, В. А. Пресняков, инж. Электроконтактная наплавка с применением порошковых материалов, заключенных в металлическую оболочку //Автоматическая сварка. – 1999. – №5. – с. 56 – 59.

В. М. Карпенко, В. Т. Катренко, В. А. Пресняков Электроконтактная наплавка порошковых материалов в металлической оболочке Краматорск.: КИИ, 1999, 126 с.

В. К. Ярошевич, Я. С. Генкин, В. А. Верещагин Электроконтактное упрочнение. – Минск.: Наука и техника, 2002, 256 с.

Ю. В. Клименко Под редакцией Э. С. Каракозова. Электроконтактная наплавка. Москва.: «Металлургия», 1998, 128 с.

И. Д. Радомысельский, Е. В. Рыморов Уплотнение и электросопротивление смесей металлических порошков с неметаллическими при низких давлениях холодного прессования //порошковая металлургия. – 2005. – №7. – с. 70 – 74.