Термодинамические свойства 3,3,5-Триметилгептана, 1,7,7-Триметилбицикло-[2,2,1] гептана, 2-Метил-2-бутанола и изобутилбутаната
2-Метил-2-бутанола и изобутилбутаната" width="13" height="24" align="BOTTOM" border="0" />Критическое давление.
;
Критический объем.
Ацентрический фактор.
Метод Джобака.
Критическую температуру находим по уравнению;
где -критическая температура; -температура кипения (берем из таблицы данных);
-количество структурных фрагментов в молекуле; -парциальный вклад в свойство.
Критическое давление находим по формуле:
где -критическое давление в барах; -общее количество атомов в молекуле; -количество структурных фрагментов; -парциальный вклад в свойство.
Критический объем находим по формуле:
где -критический объем в ; -количество структурных фрагментов; -парциальный вклад в свойство.
Для расчета, выбираем парциальные вклады в различные свойства для каждого вещества из таблицы составляющих для определения критических свойств по методу Джобака.
3,3,5-Триметилгептан
Выпишем парциальные вклады для температуры, давления и объема:
Группа | кол-во | ΔT | ΔP | ΔV |
СН3- | 5 | 0.0705 | -0.006 | 325 |
,-СН2- | 3 | 0.0567 | 0 | 168 |
>СН- | 1 | 0.0164 | 0.002 | 41 |
>С< | 1 | 0.0067 | 0.0043 | 27 |
∑ | 10 | 0.1503 | 0.0003 | 561 |
Критическая температура.
Критическое давление.
;
Камфан, борнан, 1,7,7-Триметилбицикло-[2,2,1]гептан
Выпишем парциальные вклады для температуры, давления и объема:
Группа | к-во | ΔT | ΔP | ΔV |
CН3 | 3 | 0,0423 | -0,0036 | CН3 |
(C)цикл | 2 | 0,0084 | 0,0122 | (C)цикл |
(CH2)цикл | 4 | 0,04 | 0,01 | (CH2)цикл |
(CH)цикл | 1 | 0,0122 | 0,0004 | (CH)цикл |
Сумма | 10 | 0,1029 | 0,019 | Сумма |
Критическая температура.
Критическое давление.
;
2-Метил-2-бутанол
Выпишем парциальные вклады для температуры, давления и объема:
Группа | кол-во | ΔT | ΔP |
СН3- | 3 | 0,0423 | -0,0036 |
ОН- | 1 | 0,0741 | 0,0112 |
,-СН2- | 1 | 0,0189 | 0 |
>С< | 1 | 0,0067 | 0,0043 |
Сумма | 6 | 0,142 | 0,0119 |
Критическая температура.
Критическое давление.
;
Изобутилбутаноат
Выпишем парциальные вклады для температуры, давления и объема:
Группа | кол-во | ΔT | ΔP |
СН3 | 3 | 0.0423 | -0.0036 |
СН2 | 3 | 0.0567 | 0 |
СН | 1 | 0.0164 | 0.002 |
СОО | 1 | 0.0481 | 0.0005 |
Сумма | 8 | 0.1635 | -0.0011 |
Критическая температура.
Критическое давление.
;
Задание №4
Для первого соединения рассчитать , и . Определить фазовое состояние компонента.
Энтальпия
3,3,5-Триметилгептан
Для расчета , и воспользуемся таблицами Ли-Кеслера и разложением Питцера.
где - энтальпия образования вещества в стандартном состоянии; -энтальпия образования вещества в заданных условиях; и -изотермические изменения энтальпии.
Находим приведенные температуру и давление:
по этим значениям с помощью таблицы Ли-Кеслера и разложения Питцера интерполяцией находим изотермическое изменение энтальпии.
Из правой части выражаем:
Энтропия
где энтропия вещества в стандартном состоянии; - энтропия вещества в заданных условиях; - ацентрический фактор.
; R=8,314Дж/моль*К
Находим приведенные температуру и давление:
по этим значениям с помощью таблицы Ли-Кесслера и разложения Питцера интерполяцией находим изотермическое изменение энтропии.
Из правой части выражаем:
Теплоемкость
где - теплоемкость соединения при стандартных условиях; - теплоемкость соединения при заданных условиях; -ацентрический фактор.
; R=8,314Дж/моль*К
Находим приведенные температуру и давление:
по этим значениям с помощью таблицы Ли-Кесслера и разложения Питцера интерполяцией находим изотермическое изменение теплоемкости.
Дж/моль*К
Из правой части выражаем:
Задание №5
Для первого соединения рассчитать плотность вещества при температуре 730 К и давлении 100 бар. Определить фазовое состояние компонента.
Для определения плотности вещества воспользуемся методом прогнозирования плотности индивидуальных веществ с использованием коэффициента сжимаемости.
где -плотность вещества; М- молярная масса; V-объем.
Для данного вещества найдем коэффициент сжимаемости с использованием таблицы Ли-Кесслера по приведенным температуре и давлении.
Коэффициент сжимаемости находится по разложению Питцера:
где Z-коэффициент сжимаемости; -ацентрический фактор.
Приведенную температуру найдем по формуле
где -приведенная температура в К ; Т-температура вещества в К; -критическая температура в К.
Приведенное давление найдем по формуле ; где - приведенное; Р и давление и критическое давление в атм. соответственно.
Критические температуру и давление а так же ацентрический фактор возьмем экспериментальные.
; R=8,314Дж/моль*К
Находим приведенные температуру и давление:
Коэффициент сжимаемости найдем из разложения Питцера:
путем интерполяции находим и.
=0,6884;
=0,0127;
Из уравнения Менделеева-Клайперона ,
где P-давление; V-объем; Z- коэффициент сжимаемости; R-универсальная газовая постоянная (R=82.04); T-температура;
выразим объем:
М=142,29 г/моль.
Задание №6
Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить плотность насыщенной жидкости. Привести графические зависимости «плотность-температура» для области существования жидкой и паровой фаз. Выполнить анализ.
Для вычисления плотности насыщенной жидкости воспользуемся методом Ганна-Ямады.
где -плотность насыщенной жидкости; М -молярная масса вещества; -молярный объем насыщенной жидкости.
где - масштабирующий параметр; -ацентрический фактор; и Г-функции приведенной температуры.
3,3,5-Триметилгептан
в промежутке температур от 298 до 475 К вычислим по формуле:
В промежутке температур от 475 до 588 К вычислим по формуле:
В промежутке температур от 298 до 480 К вычислим Г по формуле:
Находим масштабирующий параметр:
Полученные результаты сведем в таблицу:
T, К | Tr | Vr(0) | Vsc | Г | Vs | ρs ,г/см3 |
181,344937 | 0,3 | 0,3252 | 318,3097 | 0,2646 | 92,8334 | 1,5327 |
211,569093 | 0,35 | 0,3331 | 318,3097 | 0,2585 | 106,0339 | 1,3419 |
241,79325 | 0,4 | 0,3421 | 318,3097 | 0,2521 | 108,9065 | 1,3065 |
272,017406 |