Методы разделения азеотропных смесей
же разделительные элементы, входящие в разные схемы, рассчитываются многократно, то есть в каждой схеме. Вместе с тем метод ветвей и границ дает достаточно надежные результаты в случае разделения зеотропных смесей. Что касается азеотропных смесей, то использование его в предлагаемом виде невозможно.
1.3.4.Интегрально-гипотетический метод
Идея интегрального метода, который был впервые сформулирован в работе [16], предполагает синтез от некоторой всеобъемлющей глобальной схемы к конкретной оптимальной схеме разделения. Глобальная схема должна включать все возможные варианты. Таким образом, интегрально-гипотетический метод включает в себя два основных этапа:
синтез гипотетической обобщенной технологической схемы разделения;
анализ и оптимизация гипотетической обобщенной технологической схемы.
В целом решение задачи синтеза оптимальной схемы разделения с использованием этого метода сводится к решению задачи определения значений коэффициентов структурного разделения потоков и параметров элементов, входящих в исходную гипотетическую схему, которые обеспечивают оптимальное функционирование системы. Таким образом, задача синтеза в данном случае сводится к непрерывной оптимизации. Синтез оптимальных схем с использованием этого метода связан с большим объемом вычислений. В этом случае постоянно приходится сталкиваться с локальным оптимумом, и трудно найти глобальный оптимум, соответствующий оптимальному варианту схемы.
1.3.5.Эволюционный метод
Основы данного метода для разделения одного потока питания на два продуктовых потока изложены в работе [16]. Метод заключается в том, что для исходной (принятой за основу) схемы разделения генерируются «соседние» схемы разделения с помощью определенных правил. Затем из них выбирается схема, по которой достигается разделение с меньшими затратами. И вновь генерируются «соседние» с выбранной схемой. Процесс прекращают, если найдена схема, характеризующаяся минимальными затратами. Таким образом, общая стратегия эволюционного метода включает следующие этапы:
синтез какого-либо простейшего исходного варианта схемы;
определение в соответствии с некоторым коэффициентом эффективности наименее эффективного элемента в исходном варианте;
исключение этого элемента из схемы;
модификация данного элемента;
стыковка модифицированного элемента с оставшейся частью схемы и коррекция схемы;
определение коэффициента эффективности для вновь полученного варианта схемы. Указанные этапы итерационно повторяются до тех пор, пока не будет синтезирована оптимальная схема.
Недостатком этого метода является, как было указано ранее, значительная вероятность получения локальных оптимумов.
1.3.6.Информационно- энтропийный метод
Информационно-энтропийный подход, разработанный Майковым с сотрудниками, можно рассматривать как разновидность эвристического метода, хотя он имеет определенное теоретическое обоснование. Согласно этому методу оптимальная схема разделения сопоставляется с наиболее эффективным процессом получения информации [16]. Следовательно, оптимальной системе соответствует максимум суммы информационных критериев разделительной способности всех разделительных аппаратов. Применение информационно - энтропийного подхода приводит к тем же результатам, что и при использовании эвристического правила дихотомии. Сравнение получаемых этим методом оптимальных вариантов технологических схем с вариантами, являющимися оптимальными по приведенным затратам, показали значительное его расхождение.
Кроме рассмотренных применяется также рекурсивный метод и метод «случайных матриц». В ряде случаев можно использовать сочетание нескольких методов.
1.3.7.Метод графов.[17,18 ]
В работах [17,18] предложена стратегия синтеза множества схем, состоящих из колонн с разным числом секций, основанная на трансформации графов структур схем из простых двухсекционных колонн.
В данном методе используются ориентированные графы. При этом их вершинами выступают входы и выходы колонн, а ориентированными ребрами – потоковые связи. Тогда, схема ректификации (рис. 1.10 а) приобретает вид ориентированного мультиграфа с кратными разнонаправленными ребрами – образ секции колонны и одинарными ориентированными ребрами – образ потоковых связей между колоннами (рис. 1.10 б). Для упрощения структуры графа каждую кратную пару ребер можно заменить одним неориентированным ребром (рис. 1.12в).
Рис. 1.10. Иконографическое (а) и графовое (б, в) представление технологической схемы ректификации, ориентированные ребра – потоки, неориентированные ребра – секции, – вершины-выходы, – вершины-входы колонн
Используя такую операцию перехода от иконографического изображения схемы к графовому, авторы представляют разделение трехкомпонентной смеси (рис. 1.10 а) как граф G1 (рис. 1.11). Он имеет две идентичные по свойствам вершины (ВС), соответствующие кубовому продукту первой (выход) и питанию (вход) второй колонны. Объединением этих двух вершин и удалением из графа ориентированного ребра получается граф G2. Видно, что он является образом сложной колонны с боковой секцией. Вершина (ВС) (граф G2) есть вход жидкой фазы из боковой секции и выход паровой фазы в боковую секцию. Граф G3, соответствующий сложной колонне с боковым отбором, можно получить из G2 объединением вершин (ВС) и (В). Аналогичным образом осуществляется и операция перехода G4 ® G5 ® G6.
Рис.1.11. Преобразование графов, соответствующих схемам из простых колонн (G1, G4), в графы, соответствующие сложным колоннам с боковыми секциями (G2, G5) и с боковыми отборами (G3, G6)
Технологические схемы, соответствующие исходным графам (G1, G4), называют схемами-прообразами, а все схемы, соответствующие графам, полученным путем их трансформации, – схемами-образами. При этом полученные графы имеют на одно ребро и на одну вершину меньше, чем их прообраз. Эта операция названа авторами [17,18] операцией стягивания (u). При этом, если стягивание проводится по ориентированному ребру ее обозначают (). В целом рассмотренные преобразования представляют собой отображения одного множества графов на другое (одного множества схем на другое). Если обозначить множество схем из простых колонн П, множество схем из одной сложной колонны с боковыми секциями как Ф, множество схем из одной сложной колонны как I, то
Таким образом, метод трансформации графов структуры схем-прообразов предоставляет строгий алгоритм синтеза всех возможных вариантов схем разделения, включающих сложные колонны.
Еще один способ представления технологической схемы основан на анализе топологии траекторий ректификации [19]. Вне зависимости от числа компонентов в смеси и выделяемых фракций траектория является одномерным многообразием, отдельные части которого разделяются точками стыковки, питания и продуктов (многообразия с нулевой размерностью). Такая структура просто отображается в графовой форме. Вершины соответствуют точкам, а ребра – линиям траектории ректификации. Разработанные в [19,20] методы позволяют синтезировать технологические схемы в различных классах эквивалентности, не только преобразуя графы, но и заменяя их матричным представлением.
Поскольку траектория есть изменение концентраций компонентов по высоте колонны, то ее можно рассматривать как путь процесса, который, как и каждая технологическая схема, обладает определенной термодинамической эффективностью. Коренным отличием предложенных авторами , 36, 37подходов к синтезу схем ректификации от традиционных комбинаторных методов является то, что структуры в различных классах эквивалентности можно рассматривать как образы и прообразы. Следовательно, такой графовый метод синтеза может предсказывать энергетическую эффективность схем.
В частности высказано предположение, что если структура оптимальной технологической схемы, представленная в том или другом виде, сохраняет все или основные свои связи при операциях преобразования, то она порождает оптимальные решения в других классах эквивалентности.
Применение тополого-графового подхода к синтезу и анализу технологий ректификации многокомпонентных смесей позволило разработать ряд технологических решений, обеспечивающих существенное снижение энергозатрат. В частности, предложены схемы разделения:
широкой фракции легких углеводородов со снижением энергозатрат на 13,0 – 24,7% ;
олигомеров пропилена со снижением энергозатрат на 7,0% ;
продуктов алкилирования фенола бутиленами, с получением паратретбутилфенола первого и высшего сорта ;
синтетических жирных кислот, обеспечивающая снижение энергозатрат на 2,1% .
Таким образом, тополого-графовый подход к синтезу технологических схем ректификации многокомпонентных смесей обеспечивает выбор научно обоснованного энергосберегающего технического решения.
1.4. Некоторые свойства, токсическое действие, получение и применение компонентов.[22]
Толуол (метилбензол) C6H5CH3
Физические свойства. Молярная масса 92,14; бесцветная жидкость с ароматическим запахом;ТПЛ=-94,99 ОС,ТКИП=110,62 ОС. Плотность 0,8669 г/см3. Смешивается со спиртами, углеводородами, хорошо растворим в большинстве органических растворителей; растворимость в воде 0,014% по массе (20 ОС); растворимость воды в толуоле 0,4% (20 ОС).
Химические свойства. По химическим свойствам толуол – типичный представитель ароматических углеводородов. Легко образует комплексы с переносом заряда: с переходными металлами (Co, Mo и др.) комплексы «сэндвичевого» типа, с трикарбонилхромом- «зонтичного» типа, а также со многими органическими акцепторами электронов (тринитробензол и др.). В реакции электрофильного замещения (нитрование, галогенирование, сульфирование и др.) вступает легче бензола, образуя моно-, ди- и тризамещенные, главным образом по пара- и орто-положениям. При окислении по метильной группе (в зависимости от условий) основные продукты реакции- бензиловый спирт (окислитель- О2), бензальдегид (Cr2O3) или бензойная кислота (О2,Br2, бензоаты Co и Mn). При галогенировании в боковую цепь под действием УФ облучения превращается в смесь бензилхлорида, a,a-дихлортолуола (бензальхлорид) и (трихлорметил)бензола (бензотрихлорид); процесс сопровождается хлорированием в ядро. Гидрирование толуола на цеолитных и оксидных (Cr2O3, MoO3, CoO) катализаторах при высоких температурах (600-800 ОС, давление 3,5-6МПа) приводит к бензолу(промышленный метод, до 2 млн. т/год в США), гидрирование в присутствии Ni, Pt и др. в жидкой (10-30 МПа, 100-200 ОС) или газовой (0,1 МПа, 110-180 ОС) фазе к метилциклогексану.
Получение. Получают толуол преимущественно из нефти при вторичной её переработке: риформинге низкокипящих продуктов, полученных при прямой перегонке нефти или каталитическом крекинге, пиролизе газойля и рафинатов риформинга, направленном одновременно на получение непредельных и ароматических углеводородов. Очистку нефтяного толуола осуществляют методом экстракции (экстрагенты ди- и триэтиленгликоли, N-метилпирролидон, ДМФА) или экстактивной ректификации.
Каменноугольный толуол, образующийся в процессе коксования, извлекают из коксового газа в виде компонента сырого бензола, подвергают сернокислотной очистке (для удаления непредельных и серосодержащих соединений) и выделяют ректификацией. Чистоту и качество толуола контролируют методами ГЖХ. Значительное количество толуола получают как побочный продукт при синтезе стирола из бензола и этилена.
Применение. Основное количество толуола перерабатывают в бензол, фенол, капролактам, толуилендиизоцианаты; остальное количество используют в качестве растворителя для пластических масс, нитроцеллюлозных, алкидных лаков и эмалей, высокооктанового компонента моторных топлив, исходного вещества для получения многочисленных производных (в т.ч. галоген-, сульфо- и нитропроизводных).
Безопасность, токсичность. Толуол легко воспламеняется, температура вспышки 4 ОС, температура самовоспламенения 536 ОС, концентрационные пределы воспламенения(КПВ) 1,25-6,7% по объему. Поражает человека через органы дыхания и кожу, вызывает нервное возбуждение, рвоту, при больших концентрациях- потерю сознания; ПДК 0,6 мг/м3,ПДК в воде 0,05 мг/л.
Метилэтилкетон (2- бутанон) CH3COC2H5
Физические свойства. Молярная масса 72,12; бесцветная легколетучая жидкость с запахом, напоминающим запах ацетона; ТПЛ=-86,3 ОС, ТКИП=79,6 ОС. Плотность 0,8054 г/см3. Растворимость в воде 26,8% по массе при 20 ОС, воды в метилэтилкетоне-12,5%. Смешивается с органическими растворителями.
Химические свойства. Обладает всеми химическими свойствами, характерными для алифатических кетонов. Образует кристаллические соединения с гидросульфитами щелочных металлов, например с NaHSO3 – C2H5(CH3)C(OH)SO3Na. Только сильные окислители, например щелочной раствор KMnO4 и хромовая кислота, окисляют метилэтилкетон до муравьиной, уксусной и пропионовой кислот и далее до CO2 и H2O. Каталитически восстанавливается до изо-бутанола, амальгамами Mg и Zn, а также Zn с CH3COOH до CH3(C2H5)C(OH)C(OH)(C2H5)CH3. Атомы водорода легко замещаются при галогенировании, нитрозировании и т.д. Метилэтилкетон окисляет вторичные спирты до кетонов. Вступает в альдольную конденсацию с образованием диацетонового спирта, а также в кротоновую конденсацию.
Получение. В промышленности метилэтилкетон получают из бутенов, содержащихся в бутан-бутиленовой фракции газов переработки нефти. Первая стадия - гидратация бутенов 70-80%-ной H2SO4 при 30-40 ОС и давлении ~0,1 МПа в 2-бутанол с промежуточным образованием 2-бутилсульфата CH3CH(OSO3H)C2H5. 2-Бутанол выделяют ректификацией и превращают в метилэтилкетон дегидрированием при 400-500 ОС (кат. –ZnO на пемзе, цинк-медный) или окислительным дегидрированием при 500 ОС в присутствии Ag на пемзе. Недостатки процесса: образование большого количества сточных вод на стадии гидратации, высокие энергозатраты, связанные с необходимостью концентрирования H2SO4. Разработаны и внедрены процессы прямой гидратации бутенов с использованием гетерополикислот и сульфокатионитов в качестве катализаторов, не имеющие указанных недостатков. Перспективно получение метилэтилкетона окислением бутенов на гомогенном катализаторе – водном растворе соли Pd и обратимо действующего окислителя (например, фосфорномолибденванадиевой гетерополикислоты).
Применение. Используется как растворитель перхлорвиниловых, нитроцеллюлозных, полиакриловых лакокрасочных материалов и клеев, типографских красок, депарафинизации смазочных масел и обезмасливания парафинов (удаление смеси масла и низкоплавкого парафина); промежуточный продукт в производстве пероксида метилэтилкетона (отвердитель полиэфирных смол), втор-бутиламина, оксима метилэтилкетона (антиоксидант) и др.
Безопасность, токсичность. Температура вспышки -2,2 ОС, КПВ 1,97-10,2%. Раздражает слизистые оболочки глаз, носа, горла; ПДК 200мг/м3.
Этилцеллозольв (2-этоксиэтанол) C2H5OCH2CH2OH
Физические свойства. Молярная масса 90,12; бесцветная горючая жидкость со слабым спиртовым запахом; ТПЛ=-70 ОС; ТКИП=135,6 ОС. Плотность 0,9311 г/см3. Смешивается со спиртами и органическими растворителями во всех соотношениях.
Химические свойства. Этилцеллозольв обладает свойствами, характерными для этиленгликоля и простых эфиров. Металлы и их гидроксиды легко замещают водород гидроксильной группы; при взаимодействии с карбоновыми кислотами образуются сложные эфиры, например с уксусной кислотой – целлозольвацетат
С2Н5ОСН2СН2ОН + СН3СООН = С2Н5ОСН2СН2ОСОСН3
При оксиэтилировании – эфиры этиленгликолей.
Получение. В промышленности этилцеллозольв получают взаимодействием этиленоксида с этанолом при 150-200 ОС и давлении 2-4МПа в присутствии гомогенных (кислоты, щелочи) или гетерогенных (цеолиты, алюмосиликаты, силикагели и др.) катализаторов. Возможно также получение взаимодействием этиленхлоргидрина и алкоголята Na.
Применение. Применяется в качестве растворителя лакокрасочных материалов, производстве растворителей для нитратов, ацетатов целлюлозы, фенолформальдегидных, полиэфирных и эпоксидных смол. Используется как присадка к моторным и реактивным топливам. Входит в состав антиобледенительных жидкостей. Применяется в чистящих средствах, при печатании, в производстве кино- и фотопленки.
Безопасность, токсичность. Легковоспламеняющаяся токсичная жидкость. Температура вспышки 48,9 ОС, температура самовоспламенения 237,8 ОС, КПВ 2,6-15,7%. Пары ядовиты; накапливаясь в организме, может вызвать изменения в печени и почках; при хронических отравлениях поражают, главным образом, центральную нервную систему и слизистые оболочки. Всасываются через кожу, вызывают дерматит, при приеме внутрь - смерть. ПДКРЗ – 10мг/м3.
2. ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ.
Целью настоящей работы является определение оптимальных рабочих параметров процесса экстрактивной ректификации смеси толуол–этилцеллозольв азеотропного состава в сложной колонне с боковой укрепляющей секцией. К таким параметрам относятся температура и расход разделяющего агента, тарелки подачи исходной смеси и экстрактивного агента, уровень отбора в боковую секцию и величина бокового отбора. В качестве критерия оптимизации использовали энергетические затраты в кипятильнике колонны.
Решение поставленной задачи осуществляли путем вычислительного эксперимента с использованием программного комплекса РRО-П.
3. РАСЧЕТНО–ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.
3.1. Критерий оптимизации.
В качестве критерия оценки эффективности применения комплекса с частично связанными тепловыми и материальными потоками мы использовали суммарные энергетические затраты в кубах простых двухсекционных колонн (SQкипПДК) и кубах сложной колонны с боковой исчерпывающей секцией (SQкипСК). При этом SQкипСК рассчитывались исходя из уравнения общего теплового баланса сложной колонны с боковой секцией, которое имеет вид следующий вид:
QF + QЭА + Qкип1СК + Qкип2СК = QD + QW1 + QW2 + Qконд1 (3.1)
где QF = F*CF*TF – количество тепла, поступающее с потоком исходной смеси;
QЭА = РЭА*СЭА*ТЭА – количество тепла, поступающее в колонну с потоком экстрактивного агента;
QD = D*CD*TD – количество тепла, отводимое с потоком дистиллята основной колонны;
QW1 = W1*CW1*TW1 – количество тепла, отводимое с кубовым потоком основной колонны;
QW2 = W2*CW2*TW2 – количество тепла, отводимое с кубовым потоком боковой секции;
Qконд = D(R+1)r – количество тепла, отводимое при конденсации пара для создания потоков дистиллята и флегмы в основной колонне.
Откуда суммарные затраты тепла в кипятильниках:
SQкипСК = Qкип1СК + Qкип2СК = QD + QW1+ QW2 + Qконд1 – QF – QЭА (3.2)
То же для сложной колонны с боковой исчерпывающей секцией:
SQкипПДК = Qкип1ПДК + Qкип2ПДК = QD + QW1+ QW2 + Qконд1 + Qконд2 – QF – QЭА
Потоки D1, D2 и W при заданном качестве продуктов определяются из общего материального баланса и зависят от количества и состава питания, а также от соотношения F:ЭА. Следовательно, теплосодержание верхнего и нижнего продуктов основной колонны и дистиллята боковой секции также зависят от этих величин.
Энергозатраты на проведение процесса будут определяться температурой и расходом экстрактивного агента, подаваемого в колонну, флегмовым числом в основной колонне (R). Величина R зависит от профиля концентраций в колонне, на формирование которого в данном случае оказывает влияние не только положение тарелок подачи исходной смеси и ЭА, его температура и расход, но и положение тарелки отбора парового потока в боковую секцию и его количество.
3.2. Моделирование фазового равновесия в системе этилцеллозольв – толуол – метилэтилкетон.
Для расчета оптимальных рабочих параметров процесса необходимо иметь данные о фазовом равновесии в исследуемой системе. Физико – химические свойства чистых веществ приведены в таблице 3.1.
Таблица 3.1.
Физико – химические свойства компонентов.
Компонент | Структурная формула | Молекулярная масса | Плотность,г/мл |
ТКИП, ОС |
Метилэтилкетон | CH3COC2H5 | 72,104 | 0,805 | 79,60 |
Толуол | C6H5CH3 | 92,140 | 0,8669 | 110,63 |
Этилцеллозольв | C2H5OCH2CH2OH | 90,120 | 0,9311 | 135,10 |
В смеси этилцеллозольв – толуол имеется азеотроп с минимумом температуры кипения (Тазкип=110,15єC, содержание этилцеллозольва–10,8% мас.) [2]. Для моделирования фазового равновесия использовали уравнение Вильсона, параметры которого приведены в [2] (см. таблицу 3.2.).
Таблица 3.2.
Параметры уравнения Вильсона.
Л12 | Л21 | |
Метилэтилкетон– толуол |
0,9175 | 0,7636 |
Метилэтилкетон– этилцеллозольв |
0,2121 | 1,7940 |
Толуол– этилцеллозольв |
0,1099 | 0,7865 |
Уравнение Антуана представлено в виде:
LgP=A–(B/C+T), где Р– давление в мм.рт.ст.; Т– температура в ОС; А,В,С– коэффициенты уравнения Антуана (таблица 3.3.).
Таблица 3.3.
Коэффициенты уравнения Антуана.
Компонент | А | В | С |
Метилэтилкетон | 7,2476 | 1419,294 | 245,436 |
Толуол | 6,9551 | 1345,090 | 219,520 |
Этилцеллозольв | 7,5453 | 1445,030 | 178,099 |
3.3. Подготовка красчетному эксперименту.
Наша работа основана на исследованиях, проведённых автором [2]. В работе был исследован процесс экстрактивной ректификации смеси толуол– этилцеллозольв состава, близкого к азеотропному, с легкокипящим разделяющим агентом (метилэтилкетон). На основании теоретического обоснования, было высказано предположение, что возможны два варианта проведения процесса (с разновысотной подачей агента и смеси, и с однотарелочной подачей). Проведенные эксперименты (по колонне экстрактивной ректификации) подтвердили правильность этого предположения.
Для проверки адекватности описания данной системы и возможности проведения дальнейших расчетов в программном комплексе PRO/II, по данным работы [2] был проведен проверочный эксперимент. Результаты и схема приведены ниже.
аб
Рис.3.1. Колонна с разновысотной (а) и однотарелочной (б) подачей смеси и разделяющего агента.
Таблица 3.4.
Режим и результаты лабораторных опытов и расчетов (смесь МЭК– Т– ЭЦ ).
Подача смеси и агента | Питание | Агент | R | n/l/m | Верхний продукт, масс.% | Кубовый продукт | ||||
Поток, кг/ч | Состав,масс.% | Поток, кг/ч | Состав, масс.% | Поток, кг/ч | Состав,масс.% | |||||
Разновысотная | Эксп-т | 100 | 0– 72,6– 27,4 | 242 | 99,5– 0,5– 0 | 0,5 | 4/16/4 | 77,5– 22,5– 0 | 26,0 | 0– 0,8– 99,2 |
Расчет | 100 | 0– 72,6– 27,4 | 242 | 99,5– 0,5– 0 | 0,5 | 4/16/4 | 78,3– 20,2– 1,5 | 26,2 | 0,7– 0,2– 99,1 | |
Однотарелочная | Эксп-т | 100 | 0– 72,6– 27,4 | 273 | 99,5– 0,5– 0 | 0,5 | 12/0/12 | 77,4– 22,5– 0,1 | 25,8 | 0– 0,3– 99,7 |
Расчет | 100 | 0– 72,6– 27,4 | 273 | 99,5– 0,5– 0 | 0,5 | 12/0/12 | 75,9– 23,2– 0,9 | 26,1 | 0,1– 0,3– 99,6 |
где n, l и m– число теоретических тарелок в укрепляющей, реэкстракционной и исчерпывающей секциях.
Нужная воспроизводимость была достигнута, что позволило нам продолжить дальнейшие расчеты.
3.4. Расчетный эксперимент.
3.4.1. Оптимизация комплекса из двух простых двухсекционных колонн.
При фиксированном количестве, составе, температуре исходной смеси энергозатраты в кубах колонн определяются несколькими параметрами, а именно: флегмовыми числами в колонне экстрактивной ректификации и колонне регенерации агента, температурой и расходом экстрактивного агента.
Флегмовые числа в колоннах зависят от положения тарелок питания и подачи агента.
В колонну экстрактивный агент обычно подают при температуре кипения. Проведенные ранее расчеты для экстрактивной ректификации показали, что с увеличением температуры подачи агента в колонну, энергозатраты в кипятильнике снижаются. С другой стороны, чем при более высокой температуре агент подается в экстрактивную колонну, тем меньше тепла можно получить за счет его охлаждения. Таким образом, для точного определения температуры подачи агента в колонну, необходимо провести технико-экономический расчет схемы. На данном этапе для снижения размерности задачи оптимизации мы приняли ТЭА=80єC (температура кипения экстрагента, подаваемого в колонну). Это позволит использовать его тепло в производственных нуждах, например для подогрева исходной смеси.
Таким образом, для обеспечения минимальных энергозатрат в кубе основной колонны нам необходимо найти оптимальное сочетание следующих рабочих параметров процесса:
удельный расход экстрактивного агента;
положение тарелок питания;
положение тарелки подачи экстрактивного агента.
Так как все эти параметры взаимосвязаны между собой, мы проводили расчеты в несколько этапов. Количество исходной смеси составило 100 кг/ч, концентрация этилцеллозольва в питании 27,4% массовых. Эффективность основной колонны– 26 т.т., эффективность колонны регенерации– 23 т.т. Концентрация этилцеллозольва в продуктовом потоке - 99,0% масс., хлороформа– 99,0% масс., ДМФА– 99,0% масс.. Расчет фазового равновесия проводили по модели Вильсона, параметры которой приведены выше.
Сначала мы провели расчет, целью которого было определение оптимального положения тарелок питания и отбора при соотношении F:ЭА = 1:3,5 и количестве БО=150 кг/час.
5. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.
Айнштейн В.Г., Захаров М.К., Носов Г. А. и др. Общий курс процессов и аппаратов химической технологии, в 2 книгах, книга 2. Под ред. проф. Айнштейна В.Г. М.: Химия, 2000. 1760 с.
Диссертация
Тимофеев В.С., Серафимов Л.А. Принципы и технологии основного органического и нефтехимического синтеза.М. : «Высшая школа» 2003. –536 с.
Коган В.Б. Азеотропная и экстрактивная ректификация. - Л.: Химия, 1971, 432 с.
Патент 2213721 Способ разделения С4–углеводородных фракций. Россия, МПК С07С7/08. ОАО «Нижнекамскнефтехим», Борейко Н.П., Яфизова В.П., Репин В.В., Романов В.Г., Гаврилов Г.С. N2002109490/04: Заявл. 11.04.2002: Опубл. 10.10.2003.
Гайле А.А.
Патент 976630 Способ очистки изопрена / Чуркин В.Н., Горшков В.А., Елифантьева Н.В., Бутин В.И., №2986343/04; Заявл. 20.06.1980; опубл.27.07.2000
Балашов А.Л., Чубаров С.М., Авдошин Г.А. Способ выделения и очистки 1,3-диоксолана. Нижегородский технический университет-1997, № 1.
А.с. №686266, Горшков В.А., Кузнецов С.Г., Павлов С.Ю., Беляев В.А., Серова Н.В., Васильев Г.И., Шестовский Г.П., Малов Е.А. Способ разделения смесей близкокипящих углеводородов, БИ № 26, 1996.
А.с. № 726821, Горшков В.А., Кузнецов С.Г., Павлов С.Ю., Беляев В.А., Серова Н.В., Васильев Г.И., Шестовский Г.П., Малов Е.А. Способ разделения углеводородов С4-С5, БИ № 26, 1996.
Процесс извлечения пентафторэтана, № 6-19 3066 ( Япония), НПК 203/57, 1999.
Патент № 2157360, Трофимов В.Н., Пантук Б.И., Деревцов В.И. Способ очистки бензола от непредельных углеводородов, № 99118148, 2000.
Петлюк Ф.Б., Серафимов Л.А. Многокомпонентная ректификация. Теория и расчет: М., Химия, 1983. Серия «Процессы и аппараты химической и нефтехимической технологии». 304 с.
Петлюк Ф.Б., Платонов В.М., Аветьян В.С. Оптимальные схемы ректификации многокомпонентных смесей, ХП, №11,1966, с.65-68.
Деменков В.Н. Схемы фракционирования смесей в сложных колоннах. // Химия и технология топлив и масел. – 1997, №2, с.6–8.
Комиссаров Ю.А., Гордеев Л.С., Вент Д.П. Научные основы процессов ректификации: В 2 т. Т. 2. Учебное пособие для вузов / Под ред. Л.А. Серафимова. –М.: Химия, 2004.–416 с.
Тимошенко А.В., Паткина О.Д., Серафимов Л.А. Синтез оптимальных схем ректификации, состоящих из колонн с различным числом секций. // ТОХТ. – 2001, т.35, №5, с.485–491.
Тимошенко А.В., Серафимов Л.А. Стратегия синтеза множества схем необратимой ректификации зеотропных смесей. // Теор. основы хим. технологии – 2001, т.35, №6, с.603–609
Буев Д.Л. Разработка энергосберегающих схем ректификации, содержащих сложные колонны.- Автореферат диссертации на соискание ученой степени кандидата техн. наук. М.:, МИТХТ, 2002, 24с.
Тимошенко А.В., Анохина Е.А., Буев Д.Л. Применение графов траекторий ректификации для синтеза энергосберегающих технологий разделения // Теор. основы хим. технологии, 2004, т38, №2, с.1–5
Тимошенко А.В., Серафимов Л.А. Синтез оптимальных схем ректификации с использованием колонн с различным числом секций // Теор. основы хим. технологии, 2001, т.35, №5, сс. 485-491
Химическая энциклопедия в пяти томах, 3, 4. М: Научное изд. «Большая Российская энциклопедия», 1992.