Разработка конструкции и технологии изготовления модуля управления временными параметрами

аналитических зависимостей. При аналитической компоновке мы оперируем с численными значениями различных компоновочных характеристик: геометрическими размерами элементов, их объемами, весом, энергопотреблением и т.п. Зная соответствующие компоновочные характеристики элементов изделия и законы их суммирования, можно вычислить компоновочные характеристики всего изделия и его частей.

При аналитическом методе оцениваются габаритные размеры, объем и масса изделия по формулам:


V = , (5.4.1)

M = Km , (5.4.2)

M = M' V, (5.4.3)


где V, M – общий объем и масса изделия;

kv – обобщенный коэффициент заполнения объема изделия элементами;

Vi,Mi – значения установочных объемов и массы i-х элементов конструкции;

Km – обобщенный коэффициент объемной массы изделия;

М' – объемная масса аппарата;

n – общее количество элементов конструкции изделия.

Исходными данными для расчета являются:

1) количество элементов в блоке;

2) установочная площадь каждого элемента;

3) установочный объем каждого элемента;

установочный вес каждого элемента;

количество деталей;

объем блока;

вес блока;

количество наименований деталей;

линейные размеры.

В соответствии с заданием kv = 0.5.Для прибора можно принять Мў=0.4кг/дм3.

Сведения об установочных размерах элементов и их массе сведены в таблицу 5.4.1


Таблица 5.4.1-Значение установочного объема и массы элементов изделия

Наименование элемента n,шт Vi,мм3 Мi,гр

,мм3

,гр

Резистор МЛТ-0.125 24 23 0.15 529 3.45
Резистор МЛТ-1 1 50 0.25 50 0.25
Резистор СП3-38аМ 3 418 7 1254 21
Конденсатор КМ-6а 5 114 0.5 570 4.5
Конденсатор К50-16-10мкФ 8 41 3 328 24
Конденсатор К50-16-15мкФ 3 1584 5 4752 15
КонденсаторК50-16-50мкФ 1 4072 12 4072 12
Микросхема КР140УД12 2 932 10 1864 20
Оптрон АОУ103В 2 25 8 50 16
Оптрон АОТ110А 2 25 9 50 18
Диодный мост КД104А 1 3388 20 3388 20
Диоды КС147А 2 151 3 302 6
1 2 3 4 5 6
Транзисторы КТ315В 1 108 1.5 108 1.5
Транзисторы КТ3102Е 1 108 1.5 108 1.5
Индикатор LXD 1 84823 200 84283 200
Переключатель ПКН2-2Т 16 80 50 1360 850
Переключатель ПГ2 1 172 65 172 65
Разъем ОНпКГ ( 8 конт. ) 2 1040 20 280 40
Микросхема МС145407 1 150 20 150 20
Микросхема МС14500 1 130 17 130 17
Микросхема МС38064 1 40 10 40 10
Микросхема МС7805 1 40 10 40 10
Микросхема МС68НС711Е9 1 250 110 250 110
Плата 1 12000 64 12000 64

Суммарный объем, занимаемый всеми элементами конструкции, посчитанный по табличным данным составляет:

=893562мм3


По формуле (5.4.1)определяем ориентировочный объем блока:


V=1787124м3


В соответствии с ТЗ габаритные размеры блока должны быть не более 185х145х100 мм. Согласно проведенным расчетам выбираем габаритные размеры блока 100х120х125 мм.

По формуле (5.4.2) определяем ориентировочную массу блока:


М =0.8кг


В соответствии с ТЗ масса блока должна быть не более 2.5 кг.

Также дополнительно можно определить параметр функционально-конструктивной сложности изделия, ПФКСИ. Величина ПФКСИ определяет степень использования платы активными элементами по отношению к общему количеству всех ЭРЭ, монтажных соединений и контактных площадок:

Используя данные таблицы 5.4.1, имеем;;.

Подставив данные в формулу (5.4.1) получим значение ПФКСИ = 27.

По результатам расчета можно сделать вывод: полученные данные расчета вполне удовлетворяют требованиям технического задания.


5.4.2 Расчет показателей надежности устройства

Проблема обеспечения надежности связана со всеми этапами создания изделия и всем периодом его практического использования. Надежность изделия в основном закладывается в процессе его конструирования и обеспечивается в процессе его изготовления путем правильного выбора технологии производства, контроля качества исходных материалов, полуфабрикатов и готовой продукции, контроля режимов и условий изготовления. Надежность обеспечивается применением правильных способов хранения изделия и поддерживается правильной эксплуатацией, планомерным уходом, профилактическим контролем и ремонтом. В зависимости от назначения объекта и условий его эксплуатации, надежность может включать безотказность, долговечность, ремонтопригодность и сохраняемость. Применительно к разрабатываемому устройству наиболее часто употребляются следующие показатели надежности:

- вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникнет;

- средняя наработка на отказ - отношение суммарной наработки объекта к математическому ожиданию числа отказов в течение этой наработки

- заданная наработка (заданное время безотказной работы) - наработка, в течение которой объект должен безотказно работать для выполнения своих функций;

- интенсивность отказов - вероятность отказов неремонтируемого изделия в единицу времени после заданного момента времени при условии, что до этого отказ не возникал. Другими словами - это число отказов в единицу времени отнесенное к среднему числу элементов, исправно работающих в данный момент времени.

Оперируя этими понятиями можно судить о надежностных характеристиках изделия. Итак, произведем расчет надежности, приняв следующие допущения:

- отказы случайны и независимы;

- учитываются только внезапные отказы;

- имеет место экспоненциальный закон надежности.

Последнее допущение основано на том, что для аппаратуры, в которой имеют место только случайные отказы, действует экспоненциальный закон распределения - закон Пуассона - и вероятность работы в течение времени равна:


(5.4.5)


Учитывая то что с точки зрения надежности все основные функциональные узлы и элементы в изделии соединены последовательно и значения их надежностей не зависят друг от друга, т.е. выход из строя одного элемента не меняет надежности другого и приводит к внезапному отказу изделия, то надежность изделия в целом определяется как произведение значений надежности для отдельных элементов:


(5.4.6)

где - интенсивность отказов - го элемента с учетом режима и условий работы, .

Учет влияния режима работы и условий эксплуатации изделия при расчетах производится с помощью поправочного коэффициента - коэффициента эксплуатации и тогда выразится как:


(5.4.8)


где - интенсивность отказов - го элемента при лабораторных условиях работы и коэффициенте электрической нагрузки .

Для точной оценки нужно учитывать несколько внешних и внутренних факторов: температуру корпусов элементов; относительную влажность; уровень вибрации, передаваемый на элементы и т.д. С этой целью может быть использовано следующее выражение:


, (5.4.9)


где - поправочный коэффициент, учитывающий - ый фактор;

- поправочный коэффициент, учитывающий влияние температуры;

- поправочный коэффициент, учитывающий влияние электрической нагрузки;

- поправочный коэффициент, учитывающий влияние влажности;

- поправочный коэффициент, учитывающий влияние механических воздействий.

Все определяются из справочных зависимостей и таблиц, где они приведены в виде и , как объединенные с и с .

После этого можно определить значение суммарной интенсивности отказов элементов изделия по формуле:

, (5.4.10)


где - число элементов в группе, ;

- интенсивность отказа элементов в -ой группе, ;

- коэффициент эксплуатации элементов в -ой группе;

- общее число групп.

Исходные данные по группам элементов, необходимые для расчета показателей надежности приведены в таблице 5.4.2.


Таблица 5.4.2 - Справочные и расчетные данные об элементах конструкции

гр.

Наименование

Группы

1/ч

1/ч

ч

1 2 3 4 5 6 7 8 9 10
1 Конденсаторы керамические 16 0.15 0.35 1.07 0.38 0.97 1.1 5,54
2

Аналоговые

микросхемы


2


0.02


0.7


1.07


0.75


0.05


0.5


0.28

3 Цифровые микросхемы 5 0.02 0.7 1.07 0.75 0.50 0.5 3.07

4

Разъем

многоштырьковый

(9 штырей)


2


3.2


0.7


1.07


0.75


4.8


1.2


27.4

5 Соединения пайкой 795 0.01 0.8 1.07 0.86 7.1 1.2 40.6
7 Плата печатная 1 0.2 0.6 1.07 0.64 0.13 3.2 0,74

Воспользовавшись данными таблицы 5.4.2 по формуле (5.4.10) можно определить суммарную интенсивность отказов , 1/час.

Далее найдем среднюю наработку на отказ , применив следующую формулу:

(5.4.11)


Итак, имеем:


часов.


Вероятность безотказной работы определяется исходя из формулы (5.4.12), приведенной к следующему виду:


, (5.4.13)


где часов - заданное по ТЗ время безотказной работы.

Итак, имеем:



Среднее время восстановления определяется последующей формуле:


, (5.4.14)


где - вероятность отказа элемента i-ой группы;

- случайное время восстановления элемента i-ой группы, приближенные значения которого указаны в таблице 5.4.2.

Подставив значения в формулу (5.4.9), получим среднее время восстановления =1.059ч.

Далее можно определить вероятность восстановления по формуле:


, (5.4.14)


где =6.4ч.

Следовательно, по формуле (5.4.14) определим , что больше .

Таким образом, полученные данные удовлетворяют требованиям ТЗ по надежности, так как при заданном времени непрерывной работы ч проектируемый блок будет работать с вероятностью . При этом он будет иметь среднюю наработку на отказ ч и вероятность восстановления, следовательно, дополнительных мер по повышению надежности разрабатываемого устройства не требуется.


5.5 Описание конструкции модуля


Устройство смонтировано на шасси из пластмассы. Лицевая и задняя панель выполнена съёмной. Корпус состоит из двух частей, крепящихся винтами..

Марки материалов, разрешенных к применению в данной отрасли промышленности регламентируется ведомственными нормами. На предприятиях существует более узкое ограничение марок материалов и сортаментов из числа разрешенных к применению ведомостной нормалью. Материалы, не вошедшие в перечень рекомендуемых, допускается применять в технически обоснованных случаях с разрешения органов стандартизации на предприятиях.

Металлические детали проектируемого нашего прибора за отдельным исключением можно изготовить механической обработкой материалов, поставляемых металлургической промышленностью в виде прутков, полос, ленты и листов. Однако целесообразно использование стандартных винтов крепления.

Технологические процессы, основанные на использовании способов прессования, обладают следующими основными преимуществами:

- более высокая производительность;

- меньший расход металла;

- меньшее количество операций и меньшая производительность производственного цикла;

- относительно постоянная и высокая степень точности, зависящая в основном от точности изготовления инструмента и в меньшей степени от мастерства рабочего;

- благоприятные условия для механизации и автоматизации технологического процесса и для перехода на многостаночное обслуживание;

- в большинстве случаев - экономия производственной площади.

Выбор марки материала и заготовки имеет важное значение, так как определяет расход материала, трудоемкость процесса изготовления детали, конструкцию технологической оснастки и в конечном счете себестоимость детали.

Важным показателем целесообразности выбора того или иного вида заготовки является коэффициент использования материала:


К = Qд/Qз,, (5.5.1)


где Qд - вес готовой детали;

Qз - вес заготовки.

Большинство деталей в проектируемом устройстве сделаны методом горячей штамповки. Она обладает рядом преимуществ перед другими видами обработки материалов:

- простота технологического процесса;

- высокая производительность, позволяющая на большой площади при малом количестве единиц оборудования изготовить в короткие сроки большое количество деталей;

- относительная и абсолютная дешевизна деталей;

- возможность комбинирования с другими видами технологических процессов;

- достаточная точность.

Основа точной штамповки - высокая культура эксплуатации штампов.

В соответствии с выбранным методом конструирования целесообразно выделить следующие основные функционально законченный узел - блок управления, выполняемый на отдельной печатной плате.

При данном разбиении схемы электрической принципиальной обеспечивается минимальное количество связей между узлами, высокая ремонтопригодность изделия, минимальные величины паразитных наводок, уменьшение габаритов изделия.

Компоновочные схемы блоков определяются количеством и видом составляющих элементов (дискретных радиодеталей, модульных узлов и микросхем) и их расположением. На компоновочные схемы блоков значительное влияние оказывают вспомогательные элементы (ручки, направляющие, фиксаторы, разъёмы и т.п.).

Разрабатываемая конструкция с выбранной внутренней компоновкой прибора отвечает требованиям производственной технологичности, обеспечивает высокую ремонтопригодность изделия и удобство в эксплуатации.

5.6 Защита конструкции устройства от внешних и внутренних дестабилизирующих факторов


В процессе эксплуатации разрабатываемый модуль подвергается воздействию различных факторов, отрицательно влияющих на его надёжность. К ним относятся: нагрев и охлаждение, изменение давления, влажности, химического и биологического состава среды, попадание пыли и песка, находящихся в земной атмосфере, солнечная и искусственная радиация, вибрации и удары. Для повышения надёжности блока необходимо в той или иной степени защитить его от воздействия этих факторов.


5.6.1 Выбор способа теплозащиты

Способ охлаждения во многом определяет конструкцию РЭС. Поэтому уже на ранней стадии конструирования необходимо выбрать способ охлаждения блока, после чего можно приступить к предварительной проработке конструкции. Выбранный способ охлаждения должен обеспечить заданный по ТЗ тепловой режим блока.

Как уже было отмечено, устройство управления представляет собой разборную конструкцию; блок управления монтируется в пластмассовом корпусе. Таким образом, при рассмотрении вопросов теплового режима необходимо подходить ко всему электронному блоку в целом.

Для выбора способа охлаждения необходимы следующие исходные данные:

-суммарная мощность P, рассеиваемая в блоке; P= 3 Вт;

-диапазон возможного изменения температуры окружающей среды Тсmax,

Tcmin; из раздела 1 имеем: Tcmax=55°C, Tcmin=-25°C;

-пределы измерений давления окружающей среды Pmax, Pmin; из ранее сказанного имеем Pmax=106.7кПа, Pmin=84кПа;

-время непрерывной работы T; будем считать, что режим работы длительный, т. е. T велико;

-допустимые температуры элементов Ti;

-коэффициент заполнения блока Kv=0,5;

-размеры корпуса блока L1, L2, L3; размеры корпуса электронного блока согласно ТЗ: L1=100 мм, L2=120 мм, L3=125 мм.

Определим площадь условной поверхности теплообмена: