Разработка конструкции и технологии изготовления модуля управления временными параметрами

управления временными параметрами" width="386" height="65" align="BOTTOM" border="0" /> (5.12)


Следовательно,



Индуктивность двух параллельных печатных проводников шириной, расположенных с одной стороны печатной платы и с заземляющей плоскостью:


(5.13)


где ширина двух параллельных печатных проводников, мм.

Следовательно,


Индуктивность двух параллельных печатных проводников шириной, расположенных с одной стороны печатной платы без заземляющей плоскости:


(5.14)


Следовательно,



Конструктивная задержка в одиночном печатном проводнике зависит от паразитной индуктивности и емкости:


(5.15)


где погонная задержка в проводнике;

магнитная проницаемость ( для немагнитных материалов).

Следовательно,



Паразитная индуктивность и емкость определяются по формулам:


(5.16)

(5.17)


Следовательно,



Для определения допустимых величин паразитных связей на печатных платах следует учитывать динамическую помехоустойчивость применяемых микросхем. Ее следует рассчитывать для двух случаев:

ложное срабатывание: помеха может привести к переключению микросхем функционального узла, не предусмотренному алгоритмом его работы;

сбой сигнала: помеха накладывается на информационный сигнал и препятствует переключению микросхем функционального узла в соответствии с алгоритмом их работы.

Динамическая помехоустойчивость микросхем характеризуется значениями амплитуды импульса помехи , длительностью помехи , при которых еще не происходит переключения R-S триггера.

Значение допустимой величины паразитной емкости между двумя соседними проводниками, полученное на основе экспериментального определения помехоустойчивости микросхем для случаев ложного срабатывания и сбоя сигнала для микросхем серии 1533 соответственно равны

Сбой сигнала следует учитывать в случае максимального быстродействия, при этом обеспечивается условие отсутствия ложных срабатываний.

Экспериментально полученное значение допустимой величины индуктивности шин заземления в зависимости от величин протекающего в них импульсного тока, при которых еще не происходит переключение микросхем от помех в шине заземления равно .

Как видно из вышеизложенного расчета величины паразитной емкости между печатными проводниками и их индуктивность не превышают допустимых величин.

Проверочный расчет помехоустойчивости печатной платы заключается в расчете допустимых длин проводников в зависимости от учета одновременного действия емкостной и индуктивной паразитной связи между двумя параллельно расположенными проводниками.

В этом случае:


(5.18)


где допустимая длина параллельно расположенных соседних проводников при воздействии только паразитной емкостной связи, см;

допустимая длина параллельно расположенных соседних проводников при воздействии только индуктивной паразитной связи, см.


(5.19)

(5.20)


Следовательно,

,


Допустимая длина шины питания и земли определяется по формуле:


(5.21)


где паразитная индуктивность шины питания и земли, определяется из выражения:


(5.22)


где длина шины питания и земли, см;

ширина шины питания и земли,см.

Следовательно,



По формуле (5.22) определим допустимую длину шины питания и земли:


Величину емкости конденсатора сглаживающего фильтра определяют по формуле:


, (5.23)


где наибольшая длительность фронта импульса тока в переключающих схемах;

число, показывающее во сколько раз уменьшится амплитуда паразитных осцилляций в шинах питания, ;

суммарная индуктивность участков шин питания и заземления, по которым замыкается ток переключения схем.

Следовательно,


.


Для одновременного уменьшения низкочастотных и высокочастотных паразитных осцилляций в шинах питания рекомендуется параллельно низкочастотному конденсатору фильтра емкостью порядка включать один или несколько (два, три) высокочастотных конденсаторов с малым модулем сопротивления.

Низкочастотные конденсаторы фильтра рекомендуется устанавливать по одному на каждый номинал питающего напряжения в непосредственной близости от разъема на плате.

Таким образом, максимальная длина проводников получилась гораздо больше чем есть в данной конструкции, следовательно данному критерию плата соответствует.


5.2 Обоснование выбора материалов и применяемых конструкторских решений


Проектирование современной электронно-вычислительной аппаратуры (ЭВА) основано на модульном принципе, на базе которого разработаны функционально-модульный, функционально-узловой и функционально-блочный методы конструирования. Основное требование при проектировании ЭВА состоит в том, чтобы создаваемое устройство было эффективнее своего аналога, то есть превосходило по качеству функционирования, степени миниатюризации.

Современные конструирования должны обеспечивать снижение стоимости, в том числе и энергоемкости, уменьшение объема и массы; расширение области использования микроэлектронной базы, увеличение степени интеграции, микроминиатюризацию межэлементных соединений и элементов несущих конструкций; магнитную совместимость и интенсификацию теплоотвода, широкое внедрение методов оптимального конструирования, высокую технологичность, однородность структуры, максимальное использование стандартизации.

Разрабатываемое нами устройство является печатной платой, следовательно, от правильного расположения корпусов микросхем зависят такие параметры как габариты, масса, надежность работы, помехоустойчивость. Чем плотнее будут располагаться корпуса микросхем на плоскости, тем сложнее автоматизировать их монтаж, тем более жестким будет температурный режим их работы, тем больший уровень помех будет наводиться в сигнальных связях. И наоборот, чем больше расстояние между микросхемами, тем менее эффективно используется физический объем машины, тем больше длина связей. Поэтому при установке микросхем на печатную плату следует учитывать все последствия выбора того или иного варианта размещения. Выбор шага микросхем на печатной плате определяется требуемой плотностью компоновки микросхем, температурным режимом работы, методом разработки топологии печатных плат, сложностью принципиальной схемы и конструктивными параметрами корпуса микросхемы. Вне зависимости от типа корпуса шаг установки микросхем рекомендуется принимать кратным 2,5мм. При этом зазоры между корпусами не должны быть меньше 1,5мм.

Микросхемы на печатных платах располагаются линейно-многорядно, однако допускается их размещение в шахматном порядке. Такое размещение корпусов микросхем позволяет автоматизировать процессы сборки и контроля, с большей эффективностью использовать полезную площадь печатной платы и прямоугольную систему координат для определения места расположения корпусов.

Корпуса микросхем со штыревыми выводами устанавливают только с одной стороны платы. Преимущество микросхем со штыревыми выводами - возможность автоматизации сборки и монтажа.

Следует также учитывать, что аналоговые микросхемы следует размещать в одном месте платы, для исключения помех.

На начальном этапе компоновки выберем размеры печатной платы соответствующим размерам оговоренных в техническом задании, а именно 120Х100 мм. В последующем эти размеры будут уточняться.

При выборе материалов конструкции, также как и при выборе элементной базы, необходимо руководствоваться комплексом взаимосвязанных физико-механических, электрических, технологических, экономических и других требований.

В первую очередь проведем выбор материала печатных плат.

Основными материалами, применяемыми для изготовления печатных плат, являются слоистые пластики, состоящие из связки и наполнителя. Основные параметры этих материалов приведены в таблице 5.2.1.

Таблица 5.2.1- Основные параметры слоистых пластиков

Параметр Значение


Гетинакс Текстолит Стеклотекстолит
Относительная диэлектрическая проницаемость 4,5...6 4,5...6 5...6
Тангенс угла потерь (диэлектрических) 0,008...0,02 0,03... 0,04 0,005...0,02
Объемное удельное сопротивление 10...1000 10...1000 1000...10000
Диапазон рабочих температур, оС от-60 до +80 От -60 до +70 от-60 до +80
Коэфициент теплопроводности 0,25...0,3 0,23... 0,3 0,34...0,74
ТКПР 22 22 8...9
Удельная прочность при растяжении 49 70 180
Удельная прочность при сжатии - 105 42

Выбор материалов для производства печатной платы нашего устройства необходимо производить исходя из условий его эксплуатации и условий проведения испытаний на прочность.

Материал печатной платы должен обладать механической прочностью на изгиб и растяжение. Кроме этого материал печатной платы должен иметь диапазон рабочих температур не меньший, чем у всего устройства.

Учитывая эти и другие требования можно выбрать в качестве материала печатной платы стелкотекстолит марки СФ2-35-2 ГОСТ 10316-78.

При выборе припоя следует учитывать, что припой должен быть легкоплавким, недорогим и технологичным. Кроме этого припой должен обладать хорошей адгезией к меди, а также иметь малое переходное сопротивление. Выберем наиболее распространенный оловяно-свинцовый припой марки ПОС-61 ГОСТ 21931-76. Характеристики этого припоя приведены в таблице 5.2.2.

Таблица 5.2.2 Характеристика припоя марки ПОС-61

Характеристика Значение
Температура полного раплавления, оС 190
Электросопротивление, мкОм/м 0,12
Прочность паяемых соединений, МПа 30...40

5.3 Размещение элементов и трассировка печатной платы средствами САПР


5.3.1 Анализ топологии

Проектирование современной электронно-вычислительной аппаратуры (ЭВА) основано на модульном принципе, на базе которого разработаны функционально-модульный, функционально-узловой и функционально-блочный методы конструирования. Основное требование при проектировании ЭВА состоит в том, чтобы создаваемое устройство было эффективнее своего аналога, то есть превосходило по качеству функционирования, степени минитюаризации.

Современные методы конструирования должны обеспечивать снижение стоимости, в том числе и энергоемкости, уменьшение объема и массы; расширение области использования микроэлектронной базы, увеличение степени интеграции, микроминитюаризацию межэлементных соединений и элементов несущих конструкций; магнитную совместимость и интенсификацию теплоотвода, широкое внедрение методов оптимального конструирования, высокую технологичность, однородность структуры, максимальное использование стандартизации.

Разрабатываемое нами устройство является печатной платой, следовательно, от правильного расположения корпусов микросхем зависят такие параметры как габариты, масса, надежность работы, помехоустойчивость. Чем плотнее будут располагаться корпуса микросхем на плоскости, тем сложнее автоматизировать их монтаж, тем более жестким будет температурный режим их работы, тем больший уровень помех будет наводиться в сигнальных связях. И наоборот, чем больше расстояние между микросхемами, тем менее эффективно используется физический объем машины, тем больше длина связей. Поэтому при установке микросхем на печатную плату следует учитывать все последствия выбора того или иного варианта размещения. Выбор шага микросхем на печатной плате определяется требуемой плотностью компоновки микросхем, температурным режимом работы, методом разработки топологии печатных плат, сложностью принципиальной схемы и конструктивными параметрами корпуса микросхемы. Вне зависимости от типа корпуса шаг установки микросхем рекомендуется принимать кратным 2,5мм. При этом зазоры между корпусами не должны быть меньше 1,5мм.

Микросхемы на печатных платах располагаются линейно-многорядно, однако допускается их размещение в шахматном порядке. Такое размещение корпусов микросхем позволяет автоматизировать процессы сборки и контроля, с большей эффективностью использовать полезную площадь печатной платы и прямоугольную систему координат для определения места расположения корпусов.

Корпуса микросхем со штыревыми выводами устанавливают только с одной стороны платы. Преимущество микросхем со штыревыми выводами - возможность автоматизации сборки и монтажа.

Следует также учитывать, что аналоговые микросхемы следует размещать в одном месте платы, для исключения помех.

Внедрение в инженерную практику методов автоматизации проектирования позволяет перейти от традиционного макетирования разрабатываемой аппаратуры к ее моделированию с помощью персональных компьютеров (ПК). Более того, с помощью ПК возможно осуществить цикл сквозного проектирования, включающий в себя: синтез структуры и схемы электрической принципиальной (ЭП) устройства, анализ его характеристик в различных режимах с учетом разброса параметров компонентов и наличия дестабилизирующих факторов и параметрическую оптимизацию, синтез топологии, включая размещение элементов на плате или кристалле, выпуск конструкторской документации (КД).

Топология печатной платы (ПП) разрабатывается после завершения схемотехнического моделирования. На этом этапе осуществляется размещение элементов на ПП и трассировка соединений.

Заключительным этапом разработки является проверка топологии. На нем проверяется соблюдение технологических норм, соответствие топологии схеме ЭП, а также рассчитываются электрические характеристики схемы с учетом паразитных параметров, присущих конкретной конструкции.

Одни из наиболее распространённых систем автоматизированного проектирования на ПК – система PCAD фирмы ACCEL Technologies и система OrCad . В них содержатся редакторы принципиальных схем и многослойных ПП, программа автоматического размещения компонентов на ПП и трассировки соединений, выдача данных на станки с ЧПУ, а также вспомогательные сервисные программы.

Для нанесения на чертежи схем и плат надписей создана программа рисования алфавитно-цифровых символов набором стандартных символов графических примитивов и вставки текста с помощью макрофайлов.

Для окончательной доводки чертежей к виду, регламентированному требованиями ГОСТов, можно использовать систему AutoCAD.

Система позволяет разрабатывать двухмерные чертежи и рисунки в различных областях человеческой деятельности, разрабатывать и моделировать каркасные и объемные конструкции. Данная система дает возможность редактировать чертежи, которые были импортированы из других пакетов, с последующей выдачей их на принтер или плоттер.

В данном дипломном проекте, используя схему ЭП и исходные данные ТЗ, необходимо произвести топологический синтез печатной платы (ПП). В результате должны получиться чертежи топологии ПП и сборочный чертёж печатного узла.

Исходными данными являются следующие документы и указания:

Схема электрическая принципиальная.

Способ монтажа — печатный.

Основные размеры печатной платы (ПП) в соответствии со стандартом МЭК297-3[1];

Шаг координатной сетки и отверстий—2,5 мм;

Шаг трассировки печатных проводников, ширину печатных проводников, диаметр контактных площадок и переходных отверстий определить с использованием методики [2];

Число слоёв ПП — не менее 2;

Коэффициент заполнения ПП - не менее 0,8.

Ввод электрической схемы, генерацию списка связей, компоновку и размещение элементов и трассировку ПП осуществлять средствами пакета САПР OrCad, учитывая результаты расчёта в п.5.1.1 и 5.1.2.

Передать результаты проектирования в систему AutoCad.

Чертежи ПП и печатного узла выполнить средствами пакета САПР AutoCad.

Опишем некоторые особенности применяемых пакетов САПР.

Система САПР Or-CAD позволяет выполнять:

создание условных графических обозначений (УГО) элементов принципиальной схем; создание корпусов компонентов; графический ввод схемы электрической принципиальной и конструктивов ПП; 1- и 2-стороннее размещение компонентов (корпуса со штыревыми выводами) на ПП с печатными шинами; трассировка ПП проводниками произвольной ширины; автоматизированный контроль результатов разработки печатного узла на соответствие схеме ЭП и технологическим ограничениям (зазоры и т.д.); автоматическая коррекция схемы ЭП по результатам размещения и трассировки.

Программный комплекс Or-CAD включает в себя взаимосвязанные пакеты программ, образующих систему сквозного проектирования ПП электронной аппаратуры. В ее состав входят следующие программы:

Or-CAD Capture – графический ввод и редактирование принципиальной электрической схемы, графический ввод и редактирование символов радиоэлектронных компонентов на принципиальных схемах;

Layout Plus – графический ввод и редактирование корпусов компонентов РЭА и стеков контактных площадок. Автоматическое или ручное размещение компонентов на плате;

Система САПР Or-CAD не позволяет выполнять выпуск КД на печатный узел и подготовку ТД, удовлетворяющих, указанным в п.1 (анализ ТЗ), ГОСТам. Поэтому, как оговаривалось раньше, необходима доработка результатов проектирования средствами пакета САПР AutoCad. К таким доработкам относятся следующие:

редактирование ранее созданного текста;

создание текста содержащего символы кирилицы;

простановка размеров на печатном узле;

В связи с тем, что в системе САПР AutoCad возможно более быстрое и эффективное создание графических примитивов, то рисование рамки, штампа основой надписи, редактирование ранее созданных графических примитивов в системе Or-CAD целесообразно производить средствами пакета САПР AutoCad. Так как эта система позволяет создавать окружности более сглаженной округлой формы (в дальнейшем это явно выразится при выводе результатов проектирования на печатающее устройство (принтер)), то необходимо произвести корректировку результатов, полученных в Or-CAD, средствами AutoCad.

Как и система Or-CAD система AutoCAD поддерживает слойность чертежа. Слои обладают свойствами сходными со слоями Or-CAD, что дает возможность редактировать чертежи созданные Or-CAD-ом. Слои в AutoCAD могут содержать имя слоя, состоящее из символов и цифр-букв, они могут переходить из включенного состояния в выключенное и наоборот.

Решение задачи топологического синтеза с помощью пакета САПР OrCAD сводится к получению чертежей топологии ПП в соответствии с созданной схемой ЭП и технологическими ограничениями на разрабатываемый печатный узел, оговоренными в исходных данных к курсовому проектированию. Для задания технологических ограничений необходимо использовать средства Layout или SmartRoute.Средствами программы Layout создаётся: контур ПП, барьеры для прокладки трасс в местах крепёжных отверстий печатного узла и технологической зоне по периметру платы.

Производится размещение компонентов. Для этого определяется:

координатная сетка с шагом 2,5 мм, в узлах которой будут размещаться компоненты, а также определяется ориентация размещаемых на ней компонентов;

барьеры для прокладки трасс в местах крепления корпусов компонентов (разъёмов);

список компонентов для размещения и положение дискретных компонентов относительно основных, а также допустимые зазоры между компонентами.

Затем производится фиксация компонентов (разъёмов), не подлежащих перемещению в дальнейшем.

Используя средства программы Layout, задаются параметры и правила для трассировки ПП.

Пункт Options / System Settings:

устанавливается метрическая система единиц, мм;

устанавливаются параметры координатной сетки – шаг основной координатной сетки, в узлах которой будут размещаться центры проводников и переходных отверстий, равен 1,25мм, шаг сетки размещения барьера и текста и шаг сетки размещения компонентов равен 2,5;

Пункт View / Database Spreadsheets / Layer. Просматривается и редактируется структура слоев.

слоям Top и Bottom ставим тип слоя Routing, слоям GND и POWER – Plane соответственно.

Пункт View / Database Spreadsheets / Padstacks. Просматриваются и редактируются стеки контактных площадок и переходные отверстия. Учитываем, что первый вывод в микросхеме должен быть отличной формы от других, поэтому установим его квадратным

Пункт View / Database Spreadsheets / Nets. Просматриваются и редактируются параметры цепей;

разрешаем повторную трассировку для перерасположения трассы;

разрешаем соеденять участеи цепи для Т- образных соеденений;

шинам “ земли” и питания задаем большй приоретет трассировки

Пункт Options / Global Spacing

приводим значения зазоров между проводниками, между проводниками и контактными площадками, между проводниками и отверстиями, между отверстиями для всех слоев ПП.

Пункт Options / Route Settings. Задаются глобальные параметры стратегии трассировки.

Пункт Options / Route Strategies / Manual Route. Задаются частные параметры стратегии трассировки.

Via cost - устанавливаем значение веса переходного отверстия равным 20.

Retry cost – при большом значении данного весового коэфициента увеличивается число повторных попыток расположить связь. Ставим значение 80.

Routed Limit – коэффициент влияния на длину трассы.Cтавим значение 100

Attemps – число попыток перерасположить связь. Ставим 2.

Пункт Options / Route Strategies / Route Layers. Сведения о трассировке слоев.

Routing Enabled – разрешение трассировки в данном слое.

Layer Cost – коэффициент определяющий предпочтительные слои для трассировки. При высоком значении коэффициента трассировщик будет стараться избегать данный слой при трассировке.

Direction - весовой коэффициент направления трассировки.

Пункт Options / Route Strategies / Between – весовой коэффициент , который при большом значении ограничивает проведение связей между выводами.

Пункт Options / Route Strategies / Route Sweep – указываются параметры разверток.

45S – разрешает проведение диогональных связей.

Пункт Options / Route Strategies / Route Passes – параметры прохода трассировки.

Name – имена проходов;

Pass – определяет проходы для данной разверки;

Enable – используемость данного прохода;

Options – тип прохода

- Henristics;

Maze;

Auto DFM – алгоритм улучшения трассировки;

Fan out - алгоритм для развоки элементов с поверхностным монтажем;

Via Reduce – минимизатор ПО-ий;

Auto CDE – алгоритм , удаляет ошибки проекта.

Именно в Layout Plus делаются начальные установки и расположение элементов на плате. Далее данные из Layout передаются в SmartRoute.

SmartRoute – Быстрый трассировщик с малым количеством настроек и установок, предназначенный для тестовых промежуточных трассировок, особенно полезных при расстановке элементов по полю платы. Хорошо зарекомендовал себя при оконечной работе с простыми схемами, особенно на мелкой логике. Практика использования данного трассировщика показывает, что его применение в случае печатных плат с большой плотностью расположения компонентов и большим количеством связей даёт вполне приемлемый выходной результат, и при этом заметно сокращается время трассировки по сравнению с Layout Plus.

После того, как мы растрассировали плату, необходимо оформить ее как чертежи топологии в соответствии с требованиями, регламентированными ГОСТами. Система OrCAD не позволяет полностью провести оформительскую работу, и поэтому воспользуемся системой AutoCAD. Для того чтобы AutoCAD смог “прочитать” чертежи, выполненные в системе Or-Cad, преобразуем файлы с расширением .max в файлы формата “.dxf”.

После преобразования мы загружаем файлы в AutoCAD. Далее необходимо: нанести текст в штампе основной надписи, а также технические требования к полученным чертежам, сделать вид сбоку на полученный сборочный чертёж для получения информации о габаритах печатного узла, проставить необходимые размеры и допуски на изделие.


5.3.2 Оценка качества разработанной конструкции

Оценку качества разрабатываемой конструкции можно проводится постепенно, по мере разработки конструкции.

После создания базы данных принципиальной электрической схемы с помощью программы Capture выявляются ошибки, после их исправления можно приступить к разработке ПП.

Для проверки принципиальной схемы в окне менеджера проекта необходимо выполнить команду Tools / Design Rules Check. В появившемся меню необходимо установить контроль всех параметров на наличие ошибок. Результаты проверки заносятся в текстовый файл с расширением .drc.

В выходном файле приводится список ошибок каждого вида и их подробное описание.

Теперь осуществим проверку платы на соответствие ее требуемым технологическим ограничениям.

Как уже отмечалось ранне, трассировка платы производилась в SmartRout. Важным моментом можно отметить то обстоятельство, что программа SmartRoute не позволяет проводить после окончания процесса трассировки технологической проверки правильности разводки печатных проводников и соблюдения определённых норм. Так, чтобы провести данную проверку необходим обратный переход в Layout Plus.

Утилита Design Rules Check проверяет разведенную базу данных ПП и выявляет не разведенные проводники, нарушение технологических требований к проектированию ПП.

Результаты проверок приводятся в приложении.


5.4 Конструкторские расчеты


5.4.1 Компоновочный расчет устройства

Компоновка блока - размещение на плоскости и в пространстве различных компонентов (радиодеталей, микросхем, блоков , приборов) РЭА - одна из важнейших задач при конструировании, поэтому очень важно выполнить рациональную компоновку элементов на самых ранних стадиях разработки РЭА.

Основная задача, решаемая при компоновке РЭА - это правильный выбор форм, основных геометрических размеров, ориентировочное определение веса и расположения в пространстве любых элементов или изделий радиоэлектронной аппаратуры. На практике задача компоновки РЭА чаще всего решается при использовании готовых элементов с заданными формами, размерами и весом, которые должны быть расположены в пространстве или на плоскости с учетом электрических, магнитных, механических, тепловых и других видов связей. Имея принципиальную схему и компоновочный эскиз функционального узла, можно еще до разработки рабочих чертежей и изготовления лабораторного макета оценить возможный характер и величину паразитных связей, рассчитать тепловые режимы узла и его элементов, выполнить расчет надежности с учетом не только режимов работы схемы (электрические коэффициенты перегрузки), но и с учетом рабочих температур элементов. Методы компоновки элементов РЭА можно разбить на две группы: аналитические и модельные. К первым относятся численные (аналитические) и номографические, основой которых является представление геометрических параметров и операций с ними в виде чисел. Ко вторым относятся аппликационные, модельные, графические и натурные методы, основой которых является та или иная физическая модель элемента, например в виде геометрически подобного тела или обобщенной геометрической модели. Основой для всех является рассмотрение общих