Усовершенствование охлаждения блока питания

на два обстоятельства. Во-первых, вентиляторы GlacialTech работают медленнее, во-вторых, - эффективнее. Очевидно, это результат использования крыльчатки с более сложной формой лопастей: даже при одинаковых оборотах, вентилятор GlacialTech переносит больше воздуха, чем Titan (см. графу прирост). А уровень шума при одинаковых оборотах примерно равен: пропорция соблюдается даже для вентиляторов разных производителей с различной формой крыльчатки.

Нужно понимать, что реальные шумовые характеристики вентилятора зависят от его технической конструкции, создаваемого давления, объёма прокачиваемого воздуха, от типа и формы преград на пути воздушных потоков; то есть, от типа корпуса компьютера. Поскольку корпуса используются самые разные, невозможно напрямую применять измеренные в идеальных условиях количественные характеристики вентиляторов - их можно только сравнивать между собой для разных моделей вентиляторов.

2. Усовершенствование охлаждения блока питания


Моддинг (англ. modding, происходит от слова modify - модифицировать, изменять) - внесение креативных изменений в аппаратное обеспечение компьютера. Самый распространённый объект моддинга - "case", корпус компьютера. Моддинг может делаться для улучшения параметров оборудования (то есть разгона), но, по словам самих энтузиастов, основная цель моддинга - "получение эстетического удовлетворения от вещи, которую мы любим, а также выражение собственной индивидуальности". Как относительно массовое явление, моддинг сформировался в США и странах западной Европы ориентировочно в конце 1999 - начале 2000 года. На территории Украины моддинг начал зарождаться под конец 2001 - начало 2002 года, а резкий набор популярности начался примерно в 2004 году.

Моддинг блока питания - это процесс модификации серийного компьютерного блока питания для придания ему эксклюзивности и непохожести на другие БП, улучшение системы охлаждения и повышение удобства его эксплуатации. Моддинг блока питания является составной частью моддинга компьютера, в процессе которого применяют, в основном, все те же концепции и идеи, что и при моддинге корпуса, так что можно сказать, что моддинг БП - это моддинг компьютера в миниатюре.

Ну что, следует заняться моддингом блока питания.

Мы уже в предыдущем разделе рассмотрели почти все недостатки относительно температуры БП. В основном в блоке питания используется вентиляторы на "выдув". С одной стороны это правильное решение, т.к согласно физике воздуха, холодный воздух с нижней части компьютера втягивается, проходя через блок питания, затем нагревается элементами блока питания и затем высасывается вентилятором, продолжая обдувать теплым потоком остальные составляющие компьютера, подымаясь вверх. Если же мы рассмотрим, когда вентилятор работает на "вдув", то окажется, что холодный воздух поступает на обдув элементов блока питания и далее уже ослабленный поток обдувает остальные блоки компьютера разогретым БП воздухом. Как видим и у того и у другого варианта есть свои преимущества и недостатки.

Пойдем по пути усовершенствования охлаждения блока питания с наименьшими затратами.

Установим дополнительный вентилятор на "вдув", а вентилятор на "выдуве" снабдим электронным термореле.

Схемы расположения вентиляторов, для различных вариантов показаны на рисунке 2.1 и 2.2 до переделки и после.


а)


б)

Рисунок 2.1 - Расположение вентиляторов в БП до переделки (а) и после переделки (б) первый вариант

а)

б)

Рисунок 2.2 - Расположение вентиляторов в БП до переделки (а) и после переделки (б) второй вариант


На рисунке показано направление движения воздуха. В первом варианте мы устанавливаем вентилятор на "вдув" (Рис.2.1, б), во втором на "выдув" (Рис.2.2, б).

Схема блока питания ПК до усовершенствования представлена на рисунке 2.3. Питание вентилятора осуществляется с выводов 12 В.

Тип вентилятора выбирается аналогичный установленному.

В принципе схема усовершенствованного варианта ничем не будет отличаться от схемы, которая была до усовершенствования, лишь параллельно рабочему вентилятору подключиться вводимый вентилятор.

При тестировании работы вентиляторов до усовершенствования и после.


Рисунок 2.3 - Схема блока питания ПК до усовершенствования


Были получены следующие варианты температур, которые изображены на графике (Рис.2.4).


Рисунок 2.4 - Зависимость температуры БП до усовершенствования (ряд 1) и после усовершенствования (ряд 2); на вертикальной оси ˚С


На сегодняшний день существует два пути для облегчения работы охлаждающего процессор вентиляторов: софтовое охлаждение и использование реобасов.

Софтовое охлаждение подразумевает инсталляцию специальной утилиты (например WaterFall, CPUIdle и пр), которая отслеживает время, в которое процессор простаивает, и в этот временной промежуток как бы переводит его в режим сна, то есть снижает количество его тактов (MHz) и подаваемое на CPU напряжение. Но такое применение в современных операционных системах теряет актуальность, так как управлением процессора занимается сама ОС.

Очень полезным прибором для мониторинга и регулировки скорости вращения вентиляторов является реобас. Это панелька, которая вставляется в свободный 5”-отсек. На ней размещается жк-дисплей (или циферблаты со стрелочками), показывающий температуру CPU, GPU и системы (при установке на эти компоненты термодатчиков), скорость всех вентиляторов, которые подключены к реобасу и крутящиеся рукоятки, управляющие скоростями вентиляторов.

Панелька проводами соединяется проводами со всеми регулируемыми компонентами системы и с БП. Недостаток в том, что тут нет никакой автоматики: нам придется следить за температурой, скажем БП, и если она позволяет, при желании занижать количество оборотов.

Для того, чтобы оградить БП от перегрева разработаем простейшую схему включения вентилятора (Рисунок 2.5).

Конечно можно разработать и более сложную и надежную схему управления вентилятором, например на микроконтроллере, но при этом существенно увеличиться стоимость разрабатываемого устройства. Конструкция собрана для того, чтобы вентилятор не работал постоянно.

Если температура опуститься ниже 30˚С вентилятор отключиться.


Схема не содержит дорогих и дефицитных элементов. Питается схема от общей схемы питания компьютера +12В. Спецификация элементов приведена в Приложении А.


Рисунок 2.5 - Схема принципиальная электрическая термореле для включения вентилятора жесткого диска


Транзистор КТ814А можно закрепить непосредственно на корпусе компьютера предварительно освободив "площадку" от краски - получится своего рода теплоотвод. Терморезисторы ММТ подверглись небольшой доработке. Паяльником нагреваем корпус и извлекаем сам терморезистор - так он быстрее будет реагировать на изменение температуры. Разместим терморезисторы на БП приклеяв их эпоксидной смолой к корпусу БП, а если рядом находится еще один блок, который требует обдува вентилятором, второй резистор можно разместить на последнем. Резистор 1,5 КОм подобран экспериментально, на температуру срабатывания около 30 градусов. Данное устройство можно применить и в других блоках компьютера, когда требуется охлаждение, а постоянная работа вентилятора нежелательна.

Подключение вентилятора и термореле.

Вентиляторы охлаждения компьютера стандартно запитываются напряжением +12 В. Питание подаётся при помощи специальных трёх - или четырёхконтактных разъёмов, или разъёмов для питания жёстких дисков и оптических приводов (их часто называют молекс, по имени разработавшей их фирмы Molex) (Рисунок 2.6).


Рисунок 2.6 - Разъемы фирмы Molex


Ключом разъёма служат скошенные углы с одной из сторон. Провода подключены следующим образом: два центральных - "земля", общий контакт (чёрный провод); +5 В - красный, +12 В - жёлтый. Для питания вентилятора через молекс-разъём используются только два провода, обычно чёрный ("земля") и красный (напряжение питания). Подключая их к разным контактам разъёма, можно получить различную скорость вращения вентилятора. Стандартное напряжение в 12 В запустит вентилятор со штатной скоростью, напряжение в 5-7 В обеспечивает примерно половинную скорость вращения.

Часто для ограничения скорости вращения вентилятора примеряются постоянные или переменные резисторы, включенные последовательно в цепи питания. Изменяя сопротивление переменного резистора, можно регулировать скорость вращения: именно так устроены многие ручные регуляторы скорости вентиляторов. Конструируя подобную схему нужно помнить, что, во-первых, резисторы греются, рассеивая часть электрической мощности в виде тепла, - это не способствует более эффективному охлаждению; во-вторых, электрические характеристики электродвигателя в различных режимах работы (запуск, разгон, стабильное вращение) не одинаковы, параметры резистора нужно подбирать с учётом всех этих режимов. Чтобы подобрать параметры резистора, достаточно знать закон Ома; использовать нужно резисторы, рассчитанные на ток, не меньший, чем потребляет электродвигатель. Не приветствуем ручное управление охлаждением, так как считаем, что компьютер - вполне подходящее устройство, чтобы управлять системой охлаждения автоматически, без вмешательства пользователя.


Рисунок 2.7 - Схема блока питания после усовершенствования


Кроме рассмотренного нами активного охлаждения можно применить относительно блока питания и пассивную систему охлаждения.

Пассивными системами охлаждения принято называть такие, которые не содержат вентиляторов. Пассивным охлаждением могут довольствоваться отдельные компоненты компьютера, при условии, что их радиаторы помещены в достаточный поток воздуха, создаваемый "чужими" вентиляторами: например, микросхема чипсета часто охлаждается большим радиатором, расположенным вблизи места установки процессорного кулера. Популярны также пассивные системы охлаждения (Рисунок 2.8).


Рисунок 2.8 - Пассивное охлаждение


Очевидно, чем больше радиаторов приходится продувать одному вентилятору, тем большее сопротивление потоку ему нужно преодолеть; таким образом, при увеличении количества радиаторов часто приходится увеличивать скорость вращения крыльчатки. Эффективнее использовать много тихоходных вентиляторов большого диаметра, а пассивные системы охлаждения предпочтительнее избегать. Несмотря на то, что выпускаются пассивные радиаторы для процессоров, видеокарты с пассивным охлаждением, даже блоки питания без вентиляторов (FSP Zen), попытка собрать компьютер совсем без вентиляторов из всех этих компонент наверняка приведёт к постоянным перегревам. Потому, что современный высокопроизводительный компьютер рассеивает слишком много тепла, чтобы охлаждаться только лишь пассивными системами. Из-за низкой теплопроводности воздуха, сложно организовать эффективное пассивное охлаждение для всего компьютера, разве что превратить в радиатор весь корпус компьютера, как это сделано в Zalman TNN 500A (Рисунок 2.8).

Возможно, полностью пассивного охлаждения будет достаточно для маломощных специализированных компьютеров (для доступа в интернет, для прослушивания музыки и просмотра видео, и т.п.)

Поэтому для охлаждения блока питания при увеличении мощности обдува вентиляторами можно увеличить размер радиатора, но это вызовет сложные переделки и модернизации.


Рисунок 2.9 - Корпус-радиатор компьютера Zalman TNN 500A


Можно использовать стенки блока питания, как радиатор, но тогда возникает проблема обдува этого радиатора.

Более того, мечты о "пассиве", то есть полностью пассивном охлаждении блока питания, при котором вообще не используются вентиляторы и кулеры, с каждым днем становятся все ближе. Уже есть компании, выпускающие баснословно дорогие корпуса-радиаторы, безвентиляторно рассеивающие своими стенками тепло от блока питания и процессора. Для корпусов подешевле можно приобрести высокоэффективные беспропеллерные блоки питания, немало на рынке и относительно мощных видеокарт с полностью пассивным охлаждением. В ряде случаев можно отказаться и от корпусных вентиляторов. Но вот активный кулер на десктопном процессоре - вещь пока что почти незаменимая.70-100 Вт в активной работе сами не уйдут, тут явно требуется помощь - принудительный обдув радиатора, установленного на процессоре.

Очередную попытку отказаться от активного охлаждения процессорного кулера предприняла широко известная компания "Cooler Master". Ее новое творение Hyper Z600 (RR-600-NNU1-GP), представленное в марте 2008 г. на выставке CeBIT в Ганновере.

Радиатор изделия состоит из 20 больших и 27 малых алюминиевых ребер крестообразной формы толщиной 0,5 мм. Ориентировочная поверхность теплорассеивания равна 9400 кв. см. Весьма внушительная цифра. Ребра отстоят друг от друга достаточно далеко, чтобы не затруднять естественный воздухоток и не собирать пыль хлопьями. Производитель утверждает, что форма ребер радиатора "аэродинамическая", то есть воздушный поток проходит между ними более быстро, нежели "обычно": крестообразная форма ребер способствует снижению тылового давления воздуха, а оптимальный зазор между ними улучшает воздухоток.


Рисунок 2.10 - Радиатор компании "Cooler Master"

3. Технико-экономическое обоснование объекта разработки


Первичными исходными данными для определения стоимости проекта являются показатели, которые используются на предприятии ГПО "МОНОЛИТ" г. Харьков.

Эти показатели сведены в таблицу 3.1


Таблица 3.1 - Данные предприятия ГПО "МОНОЛИТ" г. Харьков. состоянием на 01.01.2010 г.

Статьи расходов Усл. обоз.

Единицы

измер.

Величина
1 2 3 4
Разработка (проектирование) КД
Тарифная ставка конструктора - технолога Зсист грн. 1200
Тарифная ставка обслуживающего персонала Зперс грн. 1200
Зарплата других категорий рабочих, задействованных в процессе разработки КД Зин. роб. грн. 1500
Тариф на электроэнергию Се/е грн. 0,56
Мощность компьютера, модема, принтера и др. квт /час. 0,3
Стоимость ЭВМ, принтера, модема для базового и нового изделия (IBMPentium/32/200/ SVG) Втз грн.

3200,00

Амортизационные отчисления Ааморт % 10
Стоимость 1-го часа использования ЭВМ Вг грн. 6,5
Норма дополнительной зарплаты Нд % 10
Отчисление на социальные мероприятия Нсоц % 37,2
Общепроизводственные (накладные) расходы Ннакл % 25
1 2 3 4
Транспортно-заготовительные расходы Нтрв % 4
Время обслуживания систем ЭВМ То час/год 180
Норма амортизационных отчислений на ЭВМ На % 10
Отчисление на удерживание и ремонт ЭВМ Нр % 10

3.1 Расчет расходов на стадии проектирования (разработки) КД нового изделия


а) Трудоемкость разработки КД нового изделия

Для определения трудоемкости выполнения проектных работ прежде всего складывается перечень всех этапов и видов работ, которые должны быть выполнены (логически, упорядочено и последовательно). Нужно определить квалификационный уровень (должности) исполнителей.

Расходы на разработку КД представляет собой оплату труда разработчиков схемы электрической принципиальной, конструкторов и технологов.

Расчет расходов на КД выводится методом калькуляции расходов, в основу которого положенная трудоемкость и заработная плата разработчиков.

а) Трудоемкость разработки КД изделия (Т) рассчитывается по формуле:


,

(3.1)

где Татз - расходы труда на анализ технического задания (ТЗ), чел. /час;

Трес - расходы труда на разработку электрических схем, чел. /час;

Трк - расходы труда на разработку конструкции, чел. /час;

Трт - расходы труда на разработку технологии, чел. /час;

Токд - расходы труда на оформление КД, чел. /час;

Твидз - расходы труда на изготовление и испытание опытного образца, чел. /час.

Данные расчета заносятся в таблице 3.2

Таблица 3.2 - Расчет заработной платы на разработку КД изделия


Виды работ

Условные обозначения

Почасовая

тарифная

ставка - Сст, грн.

Фактические

расходы времени

чел. /час;

Сдельная зарплата, грн.
1. Анализ ТЗ Татз 4,28 2 8,56

2. Разработка электрических

схем

Трес 4,28 4 17,12
3. Разработка конструкции Трк 4,28 4 17,12
4. Разработка технологии Трт 4,28 3 12,84
5. Оформление КД Токд 4,28 8 34,24

6. Изготовление и испытание

опытного образца

Твидз 4,28 4 17,12
ВСЕГО: е 4,28 25 107,00

Заработная плата на разработку КД изделия С определяется за формулой:


,

(3.2)

где - почасовая тарифная ставка разработчика, грн

- трудоемкость разработки КД изделия (определяется в гривнях с двумя десятинными знаками (00,00грн)

б) Расчет материальных расходов на разработку КД

Материальные расходы Мв, которые необходимы для разработки (создании) КД, приведенные в таблице 3.3


Таблица 3.3 - Расчет материальных расходов на разработку КД

Материал

Условные

обознач.

Факт. количество Цена за ед., грн. Сумма, грн.
1. CD DVD диск 2 2,00 4,00
2. Бумага лист 200 0,07 14,00
3. Другие материалы е Ми - - -
ВСЕГО е

18,00
ТЗР (4%)


0,72
ИТОГО Мв

18,72

в) Расходы на использование ЭВМ при разработке КД (если они есть).

Расходы, на использование ЭВМ при разработке КД, рассчитываются исходя из расходов работы одного часа ЭВМ по формуле. грн.:


,

(3.3)

где Вг - стоимость работы одного часа ЭВМ, грн.

Трес - расходы труда на разработку электрических схем, чел. /час;

Трк - расходы труда на разработку конструкции, чел. /час;

Трт - расходы труда на разработку технологии, чел. /час;

Токд - расходы труда на оформление КД, чел. /час;

При этом, стоимость работы одного часа ЭВМ (других технических средств - ТЗ) Вг определяется по формуле, грн.:


,

(3.4)

где Те/е - расходы на электроэнергию, грн.;

Ваморт - величина 1-го часа амортизации ЭВМ, грн.;

Зперс - почасовая зарплата обслуживающего персонала, грн.;

Трем - расходы на ремонт, покупку деталей, грн.;

Стоимость одного часа амортизации Ваморт определяется по формуле, грн.:

при 40 часовой рабочей неделе:


,

(3.5)

где Втз - стоимость технических средств, грн.

На - норма годовой амортизации (%).

Кт - количество недель в год (52 недели/год).

Гт - количество рабочих часов в неделю (40 часов/неделю)

Почасовая оплата обслуживающего персонала Зперс рассчитывается по формуле, грн.:


,

(3.6)

где Окл - месячный оклад обслуживающего персонала, грн.

Крг - количество рабочих часов в месяц (160 часов/месяц);

Нрем - расходы на оплату труда ремонта ЭВМ (6% Окл).

Расходы на ремонт, покупку деталей для ЭВМ Трем определяются по формуле, грн.:


,

(3.7)

где Втз - стоимость технических средств, грн.

Нрем - процент расходов на ремонт, покупку деталей (%);

Кт - количество недель на год (52 недели/год).

Гт - количество рабочих часов на неделю (36 ё 168 час. /неделя)

Расходы на использование электроэнергии ЭВМ и техническими средствами Те/е определяются по формуле, грн.:


,

(3.8)

где Ве/е - стоимость одного кВт/час электроэнергии, грн.;

Wпот - мощность компьютера, принтера и сканера (за 1 час), (кВт/час).

Таким образом, стоимость одного часа работы ЭВМ при разработке КД будет составлять (см. формулу 3.4), грн.:


.


Расходы на использование ЭВМ при разработке, грн. (см. формулу 3.3):



г) Расчет технологической себестоимости создания КД

Расчет технологической себестоимости создания КД изделия проводится методом калькуляции расходов (таблица 3.4).


Таблица 3.4 - Калькуляция технологических расходов на создание КД изделия

п/п

Наименование статей

Условны

обозначения

Расходы (грн)
1 2 3 4
1. Материальные расходы Мв 18,72
2. Основная зарплата Зо 107,00
3. Дополнительная зарплата Зд 10,70
4. Отчисление на социальные мероприятия 37,2% (Зо+Зд) 43,78
5. Накладные расходы предприятия Ннакл 16,05
6. Расходы на использование ЭВМ ВМ 18,06
7. Себестоимость КД изделия Скд = е (1ё6) 203,61

Себестоимость разработанной конструкторской документации Скд рассчитывается как сумма пунктов 1-6.


3.2 Расчет расходов на стадии производства изделия


Себестоимость изделия что разрабатывается рассчитывается на основе норм материальных и трудовых расходов.

Среди исходных данных, которые используются для расчета себестоимости изделия, выделяют нормы расходов сырья и основных материалов на одно изделие (таблица 3.5).


Таблица 3.5 - Расчет расходов на сырье и основные материалы на одно изделие

Материалы

Норма расходов

(единиц)

Оптовая цена грн. /ед.

Фактические расходы

(единиц)

Сумма

грн.

1 2 3 4 5

Стеклотекстолит СФ-2-35

(лист 1,0 ГОСТ 10316 - 78), кг


0,1


20,00


0,1


2,00

Припой ПОС - 61 (ГОСТ 21930 - 76), кг 0,2 25,00 0,2 5,00
Лак ЭП-9114 (ГОСТ 2785-76), кг 0,1 10,00 0,1 1,00
Другие - -- - -
ВСЕГО:


8,00
Транспортно-заготовительные расходы (4%)


0,32
ИТОГО:


8,32

В ходе расчета себестоимости изделия, как исходные данные, используют спецификации материалов, покупных комплектующих изделии и полуфабрикатов, что используются при изготовления одного изделия (таблица 3.6).


Таблица 3.6 - Ведомость комплектующих элементов на усовершенствование охлаждения блока питания

Наименование Тип, марка Цена за единицу, грн. Количество Сумма, грн Поставщик
Транзистор КТ814А 1,50 1 1,50 www.board
Диод КД102Б 0,55 1 0,55 www.board
Резистор МЛТ-0.25 - 1,5 к Ом±1.0% 0,30 1 0,30 www.board
Резистор ММТ-2 - 2,2 кОм +5% 3, 20 2 6.40 www.board
Реле РЭС49 РС4.569.000 5, 20 1 5, 20 www.board
Вентилятор 20x120mm, Titan TFD-12025H12B 34,72 1 34,72

www.partya/

catalog/34

ВСЕГО:


48,67
Трансп. - загот. расходы (4%)



1,95


ИТОГО:


50,62

Расчет зарплаты основных производственных рабочих проводим на основе норм трудоемкости по видам работ и почасовыми ставками рабочих (таблица 3.7).


Таблица 3.7 - Расчет основной зарплаты

Наименование операции Почасовая тарифная ставка, грн. Норма времени чел. /час. Сдельная зарплата, грн.
1 2 3 4
Заготовительная 5,91 1 5,91
Слесарная 5,91 2 11,82
Сборка 5,91 2 11,82
Монтажная 5,91 3 17,73
Настройка 5,91 1 5,91
Другие - - -
ВСЕГО:
9 53,91

Калькуляция себестоимости и определения цены выполняется в таблице 3.8.


Таблица 3.8 - Калькуляция себестоимости и определения цены изделии по новой КД

Наименование статей расходов Сумма, грн.
1 2
Сырье и материалы 8,32
Покупные комплектующие изделия 50,62
Основная зарплата рабочих 53,91
Дополнительная зарплата (15%) 8,09
Отчисление на социальные мероприятия (37,2%) 23,06
Накладные расходы (25% по данным предприятия) 13,48
Производственная себестоимость 203,61
Общая стоимость блока, что проектируется 361,09

Общая стоимость на подготовку конструкторской документации и модернизацию блока питания составляет 361,09 грн. .

Модернизация блока питания эффективна, потому что при изменении способа охлаждения блока питания улучшаются характеристики работы блока питания и соответственно всего компьютера, в частности повышается производительность. Единственным недостатком является увеличение уровня шума.

4. Охрана труда


Совокупность факторов производственной среды, оказывающей влияние на здоровье и работоспособность человека в процессе труда называется условиями труда. Организация и улучшение условий труда на рабочем месте является одним из важных резервов производительности и эффективности труда.

Основными, при определении условий труда являются следующие вопросы:

производственный микроклимат помещения;

производственное освещение;

воздействие шума и вибрации;

электромагнитные излучения

электропожаробезопасность;

эргонометрические характеристики рабочего места.

Работа с компьютером характеризуется значительным умственным напряжением и нервно-эмоциональной нагрузкой операторов, высокой напряженностью зрительной работы и достаточно большой нагрузкой на мышцы рук при работе с клавиатурой ЭВМ. Большое значение имеет рациональная конструкция и расположение элементов рабочего места, что важно для поддержания оптимальной рабочей позы человека-оператора.

В процессе работы с компьютером необходимо соблюдать правильный режим труда и отдыха. В противном случае у персонала отмечаются значительное напряжение зрительного аппарата с появлением жалоб на неудовлетворенность работой, головные боли, раздражительность, нарушение сна, усталость и болезненные ощущения в глазах, в пояснице, в области шеи и руках.

4.1 Требования к производственным помещениям


4.1.1 Окраска и коэффициенты отражения

Источники света, такие как светильники и окна, которые дают отражение от поверхности экрана, значительно ухудшают точность знаков и влекут за собой помехи физиологического характера, которые могут выразиться в значительном напряжении, особенно при продолжительной работе. Отражение, включая отражения от вторичных источников света, должно быть сведено к минимуму.

Для защиты от избыточной яркости окон могут быть применены шторы и экраны.

Окраска помещений и мебели должна способствовать созданию благоприятных условий для зрительного восприятия, хорошего настроения.

В зависимости от ориентации окон рекомендуется следующая окраска стен и пола:

окна ориентированы на юг: - стены зеленовато-голубого или светло-голубого цвета; пол - зеленый;

окна ориентированы на север: - стены светло-оранжевого или оранжево-желтого цвета; пол - красновато-оранжевый;

окна ориентированы на восток: - стены желто-зеленого цвета; пол зеленый или красновато-оранжевый;

окна ориентированы на запад: - стены желто-зеленого или голубовато-зеленого цвета; пол зеленый или красновато-оранжевый.

В помещениях, где находится компьютер, необходимо обеспечить следующие величины коэффициента отражения: для потолка: 60-70%, для стен: 40-50%, для пола: около 30%. Для других поверхностей и рабочей мебели: 30-40%.

4.1.2 Освещение

Правильно спроектированное и выполненное производственное освещение улучшает условия зрительной работы, снижает утомляемость, способствует повышению производительности труда, благотворно влияет на производственную среду, оказывая положительное психологическое воздействие на работающего, повышает безопасность труда и снижает травматизм.

Недостаточность освещения приводит к напряжению зрения, ослабляет внимание, приводит к наступлению преждевременной утомленности. Чрезмерно яркое освещение вызывает ослепление, раздражение и резь в глазах.

Неправильное направление света на рабочем месте может создавать резкие тени, блики, дезориентировать работающего. Все эти причины могут привести к несчастному случаю или профзаболеваниям, поэтому столь важен правильный расчет освещенности.

Существует три вида освещения - естественное, искусственное и совмещенное (естественное и искусственное вместе).

Естественное освещение - освещение помещений дневным светом, проникающим через световые проемы в наружных ограждающих конструкциях помещений.

Естественное освещение характеризуется тем, что меняется в широких пределах в зависимости от времени дня, времени года, характера области и ряда других факторов.

Искусственное освещение применяется при работе в темное время суток и днем, когда не удается обеспечить нормированные значения коэффициента естественного освещения (пасмурная погода, короткий световой день).

Освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным, называется совмещенным освещением.

Искусственное освещение подразделяется на рабочее, аварийное, эвакуационное, охранное. Рабочее освещение, в свою очередь, может быть общим или комбинированным. Общее - освещение, при котором светильники размещаются в верхней зоне помещения равномерно или применительно к расположению оборудования. Комбинированное - освещение, при котором к общему добавляется местное освещение.

Согласно СНиП II-4-79 в помещений вычислительных центров необходимо применить систему комбинированного освещения.

При выполнении работ категории высокой зрительной точности (наименьший размер объекта различения 0,3…0,5мм) величина коэффициента естественного освещения (КЕО) должна быть не ниже 1,5%, а при зрительной работе средней точности (наименьший размер объекта различения 0,5…1,0 мм) КЕО должен быть не ниже 1,0%. В качестве источников искусственного освещения обычно используются люминесцентные лампы типа ЛБ или ДРЛ, которые попарно объединяются в светильники, которые должны располагаться над рабочими поверхностями равномерно.

Требования к освещенности в помещениях, где установлены компьютеры, следующие: при выполнении зрительных работ высокой точности общая освещенность должна составлять 300лк, а комбинированная - 750лк; аналогичные требования при выполнении работ средней точности - 200 и 300лк соответственно.

Кроме того все поле зрения должно быть освещено достаточно равномерно - это основное гигиеническое требование. Иными словами, степень освещения помещения и яркость экрана компьютера должны быть примерно одинаковыми, т.к яркий свет в районе периферийного зрения значительно увеличивает напряженность глаз и, как следствие, приводит к их быстрой утомляемости.

4.1.3 Параметры микроклимата

Параметры микроклимата могут меняться в широких пределах, в то время как необходимым условием жизнедеятельности человека является поддержание постоянства температуры тела благодаря терморегуляции, т.е. способности организма регулировать отдачу тепла в окружающую среду. Принцип нормирования микроклимата - создание оптимальных условий для теплообмена тела человека с окружающей средой.

Вычислительная техника является источником существенных тепловыделений, что может привести к повышению температуры и снижению относительной влажности в помещении. В помещениях, где установлены компьютеры, должны соблюдаться определенные параметры микроклимата. В санитарных нормах СН-245-71 установлены величины параметров микроклимата, создающие комфортные условия. Эти нормы устанавливаются в зависимости от времени года, характера трудового процесса и характера производственного помещения (см. табл.4.1).


Таблица 4.1 - Параметры микроклимата для помещений, где установлены компьютеры

Период года Параметр микроклимата Величина
Холодный Температура воздуха в помещении 22…24°С

Относительная влажность 40…60%

Скорость движения воздуха до 0,1м/с
Теплый Температура воздуха в помещении 23…25°С

Относительная влажность 40…60%

Скорость движения воздуха 0,1…0,2м/с

Объем помещений, в которых размещены работники вычислительных центров, не должен быть меньше 19,5м3/человека с учетом максимального числа одновременно работающих в смену. Нормы подачи свежего воздуха в помещения, где