Обратимые матрицы над кольцом целых чисел

б) , и . Из (2.1) получаем равенство , . А из можем однозначно выразить, например, элемент через элемент (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).


3) Пусть , , (количество их p-1), (количество высчитывается по формуле (1.5)) и (по р штук).

Тогда количество таких матриц вычисляется по формуле

(р-1)[(р-1)2р(р+1)]ЧрЧрЧр (2.7)

Этими этапами мы перебрали все случаи невырожденных матриц порядка 3. складывая формулы (2.3), (2.6) и (2.7), полученные в этапах 1), 2) и 3) получаем формулу для нахождения количества обратимых матриц порядка 3 матриц над полем Zp


(р-1)3р3(р+1)(р2+р+1) (2.8)


3. Общая формула для подсчета обратимых матриц над полем Zp.

Используя алгоритм, описанный в предыдущих пунктах, для выведения формулы подсчета количества обратимых матриц, можем получить частные формулы для матриц произвольных порядков.

Например:

Для матриц порядка 4:

(р-1)4р6(р+1)(р2+р+1)(р3+р2+р+1).

Для матриц порядка 5:

(р-1)5р10(р+1)(р2+р+1)(р3+р2+р+1)( р4+р3+р2+р+1), и т.д.

Анализируя полученные результаты, можем сделать выводы, что общая формула для получения количества обратимых матриц порядка n над полем Zp выглядит так:

Данную формулу тождественными преобразованиями можно привести к виду:


§3. Обратимые матрицы над кольцом Zn


Из теоремы доказанной в § 1 следует, что для определителей матриц A и B выполняется равенство |A·B|=|A|·|B|.

Для обратимых матриц A и B следует A·B=E.Следовательно |A·B|=|A|·|B|=|E|=1.

Таким образом, получаем: определитель обратимой матрицы является обратимым элементом.

Попытаемся сосчитать количество обратимых матриц над некоторыми кольцами вычетов по составному модулю.


Обратимые матрицы над Z4.

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Всего различных матриц второго порядка над Z4: 44=256.

В Z4 обратимыми элементами являются 1и3. Рассмотрим сколько обратимых матриц с определителем равным 1: |A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=3. Возможные случаи:

a=1 Щ d=3,

a=3 Щ d=1,

bc=2. Возможные случаи:

b=1 Щ c=2,

b=2 Щ c=1,

b=2 Щ c=3,

b=3 Щ c=2.

Получили с данным условием 8 обратимых матриц.

2. ad=2. Возможно 4 случая (см. предыдущий пункт).

bc=1. Возможные случаи:

b=c=1,

b=c=3.

Получили с данным условием 8 обратимых матриц.

3. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

b=0 Щ c=1,

b=0 Щ c=2,

b=0 Щ c=3,

b=1 Щ c=0,

b=2 Щ c=0,

b=3 Щ c=0,

b=c=0,

b=c=2.

Получили сданным условием 16 обратимых матриц.

4. ad=0. Возможно 8 случаев (см. предыдущий пункт).

bc=3. Возможно 2 случая (см. первый пункт).

Получили с данным условием 16 обратимых матриц.

Таким образом, по данной классификации получаем 8+8+16+16+16=48 обратимых матриц, определитель которых равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 3, и число таких матриц будет также равно 48.

Следовательно, из 256 квадратных матриц второго порядка над Z4 обратимыми являются 96.


Обратимые матрицы над Z6.

*

0

1

2

3

4

5

0

0 0 0 0 0 0

1

0 1 2 3 4 5

2

0 2 4 0 2 4

3

0 3 0 3 0 3

4

0 4 2 0 4 2

5

0 5 4 3 2 1

Всего различных матриц второго порядка над Z6: 64=1296.

В Z6 обратимыми элементами являются 1 и 5. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1:
|A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=5. Возможные случаи:

a=1 Щ d=5,

a=5 Щ d=1,

bc=4. Возможные случаи:

b=1 Щ c=4,

b=4 Щ c=1,

b=2 Щ c=5,

b=5 Щ c=2,

b=c=2,

b=c=4.

Получили с данным условием 12 обратимых матриц.

2. ad=4. Возможно 6 случаев (см. предыдущий пункт).

bc=3. Возможные случаи:

b=3 Щ c=1,

b=1 Щ c=3,

b=3 Щ c=5,

b=5 Щ c=3,

b=c=3.

Получили с данным условием 30 обратимых матриц.

3. ad=3. Возможно 5 случаев (см. предыдущий пункт).

bc=2. Возможные случаи:

b=2 Щ c=1,

b=1 Щ c=2,

b=2 Щ c=4,

b=4 Щ c=2,

b=4 Щ c=5,

b=5 Щ c=4.

Получили с данным условием 30 обратимых матриц.

4. ad=2. Возможно 6 случаев (см. предыдущий пункт).

bc=1. Возможные случаи:

b=c=1,

b=c=5.

Получили с данным условием 12 обратимых матриц.

5. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

b=0 Щ c=1,

b=0 Щ c=2,

b=0 Щ c=3,

b=0 Щ c=4,

b=0 Щ c=5,

b=1 Щ c=0,

b=2 Щ c=0,

b=3 Щ c=0,

b=4 Щ c=0,

b=5 Щ c=0,

b=2 Щ c=3,

b=3 Щ c=2,

b=3 Щ c=4,

b=4 Щ c=3,

b=c=0.

Получили с данным условием 30 обратимых матриц.

6. ad=0. Возможно 15 случаев (см. предыдущий пункт).

bc=5. Возможно 2 случая (см. первый пункт).

Получили с данным условием 30 обратимых матриц.

Таким образом по данной классификации получаем 12+30+30+12+30+30=144 обратимых матриц, определитель которых
равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 5, и число таких матриц будет также равно 144.

Следовательно, из 1296 квадратных матриц второго порядка над Z6 обратимыми являются 288.

Обратимые матрицы над Z8

*

0

1

2

3

4

5

6

7

0

0 0 0 0 0 0 0 0

1

0 1 2 3 4 5 6 7

2

0 2 4 6 0 2 4 6

3

0 3 6 3 4 7 2 5

4

0 4 0 4 0 4 0 4

5

0 5 2 7 4 1 6 3

6

0 6 4 2 0 6 4 2

7

0 7 6 5 4 3 2 1

Всего различных матриц второго порядка над Z8: 84=4096.

В Z8 обратимыми элементами являются 1, 3, 5 и 7. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1
|A|=ad-bc=1.

Аналогично предыдущим пунктам будем придерживаться той же классификации:

1. ad=7. Возможно 4 случая.

bc=6. Возможно 8 случаев.

Получили с данным условием 32 обратимых матрицы.

2. ad=6. Возможно 8 случаев.

bc=5. Возможно 4 случая.

Получили с данным условием 32 обратимых матрицы.

3. ad=5. Возможно 4 случая.

bc=4. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

4. ad=4. Возможно 12 случаев.

bc=3. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

5. ad=3. Возможно 4 случая.

bc=2. Возможно 8 случаев.

Получили с данным условием 32 обратимых матрицы.

6. ad=2. Возможно 8 случаев.

bc=1. Возможно 4 случая.

Получили с данным условием 32 обратимых матрицы.

7. ad=1. Возможны 4 случая .

bc=0. Возможно 20 случаев.

Получили с данным условием 80 обратимых матриц.

8. ad=0. Возможно 20 случаев.

bc=7. Возможно 4 случая.

Получили с данным условием 80 обратимых матриц.

Таким образом, обратимых матриц, определитель которых
равен 1 —384.

Следовательно, из 4096 квадратных матриц второго порядка над Z8 обратимыми являются 1536.

Обратимые матрицы над Z9

*

0

1

2

3

4

5

6

7

8

0

0 0 0 0 0 0 0 0 0

1

0 1 2 3 4 5 6 7 8

2

0 2 4 6 8 1 3 5 7

3

0 3 6 0 3 6 0 3 6

4

0 4 8 3 7 2 6 1 5

5

0 5 1 6 2 7 3 8 4

6

0 6 3 0 6 3 0 6 3

7

0 7 5 3 1 8 6 4 2

8

0 8 7 6 5 4 3 2 1

Всего различных матриц второго порядка над Z9: 94=6561.

В Z9 обратимыми элементами являются 1, 2, 4, 5, 7 и 8.

1. ad=8. Возможно 6 случаев.

bc=7. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

2. ad=7. Возможно 6 случаев.

bc=6. Возможно 12 случаев.

Получили с данным условием 72 обратимых матриц.

3. ad=6. Возможно 12 случаев.

bc=5. Возможно 6 случаев.

Получили с данным условием 72 обратимых матриц.

4. ad=5. Возможно 6 случаев.

bc=4. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

5. ad=4. Возможно 6 случаев.

bc=3. Возможно 12 случаев.

Получили с данным условием 72 обратимых матриц.

6. ad=3. Возможно 12 случаев.

bc=2. Возможно 6 случаев.

Получили с данным условием 72 обратимых матриц.

7. ad=2. Возможно 6 случаев.

bc=1. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

8. ad=1. Возможно 6 случаев.

bc=0. Возможно 21 случай.

Получили с данным условием 126 обратимых матриц.

9. ad=0. Возможно 21 случай.

bc=8. Возможно 6 случаев.

Получили с данным условием 126 обратимых матриц.

Таким образом, обратимых матриц, определитель которых равен 1 -648.

Следовательно, из 6561 квадратных матриц второго порядка над Z9 обратимыми являются 3888.

Обратимые матрицы над Z10

*

0

1

2

3

4

5

6

7

8

9

0

0 0 0 0 0 0 0 0 0 0

1

0 1 2 3 4 5 6 7 8 9

2

0 2 4 6 8 0 2 4 6 8

3

0 3 6 9 2 5 8 1 4 7

4

0 4 8 2 6 0 4 8 2 6

5

0 5 0 5 0 5 0 5 0 5

6

0 6 2 8 4 0 6 2 8 4

7

0 7 4 1 8 5 2 9 6 3

8

0 8 6 4 2 0 8 6 4 2

9

0 9 8 7 6 5 4 3 2 1

Всего различных матриц второго порядка над Z10: 104=1000.

В Z10 обратимыми элементами являются 1, 3, 7 и 9.

1. ad=9. Возможно 4 случая.

bc=8. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

2. ad=8. Возможно 12 случаев.

bc=7. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

3. ad=7. Возможно 4 случая.

bc=6. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

4. ad=6. Возможно 12 случаев.

bc=5. Возможно 9 случаев.

Получили с данным условием 108 обратимых матриц.

5. ad=5. Возможно 9 случаев.

bc=4. Возможно 12 случаев.

Получили с данным условием 108 обратимых матриц.

6. ad=4. Возможно 12 случаев.

bc=3. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

7. ad=3. Возможно 4 случая.

bc=2. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

8. ad=2. Возможно 12 случаев.

bc=1. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

9. ad=1. Возможно 4 случая.

bc=0. Возможно 27 случаев.

Получили с данным условием 108 обратимых матриц.

10. ad=0. Возможно 27 случаев.

bc=9. Возможно 4 случая.

Получили с данным условием 108 обратимых матриц.

Таким образом, обратимых матриц, определитель которых
равен 1 —720.

Следовательно, из 10000 квадратных матриц второго порядка над Z10 обратимыми являются 2880.


Используя выше изложенный метод, было также вычислено количество обратимых матриц для колец вычетов по модулям:10, 12, 14, 15, 16, 18, 20, 21. В результате всех вычислений были получены следующие данные (ниже также использованы формулы полученные в §2):

Zn

формула количество

2

(p-1)2p(p+1) 6

3

(p-1)2p(p+1) 48

4

- 96

5

(p-1)2p(p+1) 480

6

- 288

7

(p-1)2p(p+1) 2016

8

- 1536

9

- 3888

10

- 2880

11

(p-1)2p(p+1) 13200

12

- 4608

13

(p-1)2p(p+1) 26208

14

- 12096

15

- 23040

16

- 24576

17

(p-1)2p(p+1) 78336

18

- 23328

19

(p-1)2p(p+1) 123120

20

- 43520

21

- 96768

В итоге анализа полученных результатов эмпирическим путем была получена следующая формула для вычисления количества обратимых матриц второго порядка над кольцом вычетов по произвольному модулю.

Пусть Zn -кольцо вычетов по модулю n, причем n=p1k1p2k2…pmkm ,

Тогда количество обратимых матриц второго порядка равно:


(p1-1)2(p2-1)2…(pm-1)2p1p2…pm(p1+1)(p2+1)…(pm+1)(p14)k1-1(p24)k2-1…(pm4)km-1


Литература


Бухштаб А.А. Теория чисел. М.: Просвещение, 1966.

Куликов Л.Я. Алгебра и теория чисел. М.: Высшая школа, 1979.

Курош А. Г. Курс высшей алгебры. М.: Наука, 1975.