Конструирование

должен быть больше диметра вставляемого в него вывода, что обеспечит возможность свободной установки электрорадиоэлемента. При диаметре вывода до 0.8мм диаметр неметаллизированного отверстия делают на 0.2 мм больше диаметра вывода; при диаметре вывода более 0.8 мм – на 0.3 мм больше.

Диаметр металлизированного отверстия зависит от диаметра вставляемого в него вывода и от толщины платы. Связано это с тем, что при гальваническом осаждении металла на стенках отверстия малого диаметра, сделанного в толстой плате, толщина слоя металла получится неравномерной, а при большом отношении длины к диаметру некоторые места могут остаться непокрытыми. Диаметр металлизированного отверстия должен составлять не менее половины толщины платы.

Чтобы обеспечить надежное соединение металлизированного отверстия с печатным проводником, вокруг отверстия делают контактную площадку. Контактные площадки отверстий рекомендуется делать в виде кольца.

Для неметаллизировавнных отверстий и торцов плат шероховатость поверхности делают такой, чтобы параметр шероховатости Rz < 80. У металлизированных отверстий и торцов шероховатость должна быть лучше: Rz < 40.

Отверстия на плате нужно располагать таким образом, чтобы расстояние между краями отверстий было не меньше толщины платы. В противном случае перемычка между отверстиями не будет иметь достаточно механической прочности.

Контактные площадки, к которым будут припаиваться выводы от планарных корпусов, рекомендуется делать прямоугольными.

Печатные проводники рекомендуется выполнять прямоугольной конфигурации, располагая их параллельно линиям координатной сетки.

Проводники на всем их протяжении должны иметь одинаковую ширину. Если один или несколько проводников проходят через узкое место, ширина проводников может  быть уменьшена. При этом длина участка, на котором уменьшена ширина, должна быть минимальной.

Следует иметь в виду, что узкие проводники (шириной 0.3 – 0.4 мм) могут, отслаивается от изоляционного основания при незначительных нагрузка. Если такие проводники имеют большую длину, то следует увеличивать прочность сцепления проводника с основанием, располагая через каждые 25 - 30 мм по длине проводника металлизированные отверстия или местные уширения типа контактной площадки с размерами 1 х 1 или более.

Если проводник проходит в узком месте между двумя отверстиями, то нужно прокладывать его так, чтобы он был перпендикулярен линии, соединяющей центры отверстий. При этом можно обеспечить максимальную ширину проводников и максимальное расстояние между ними.

Экраны и проводники шириной более 5 мм следует выполнять с вырезами. Связано это с тем, что при нагреве плат в процессе пайки изоляционного основания могут выделяться газы. Если проводник или экран имеют большую ширину, то газы, не находят выхода могут вспучивать фольгу. Формы вырезов может быть произвольной.

Печатную плату с установленными на ней электрорадиоэлементами называют печатным узлом.

Если ЭРЭ имеют штыревые выводы, то их устанавливают в отверстия печатной платы и запаивают. Если корпус ЭРЭ имеет планарные выводы, то их припаивают к соответствующим контактным площадкам внахлест.

ЭРЭ со штыревыми выводами нужно устанавливать на плату с одной стороны. Это обеспечивает возможность использования высопроизводительных процессов пайки, например пайку «волной». Для ЭРЭ с планарными выводами пайку «волной» применять нельзя. Поэтому их можно располагать с двух сторон печатной платы. При этом обеспечивается большая плотность монтажа, так как на одной и той же плате можно расположить большее количество элементов.

При размещении ЭРЭ на печатной плате необходимо учитывать следующее:

полупроводниковые приборы и микросхемы не следует располагать близко к элементам, выделяющим большое количество теплоты, а также к источникам сильных магнитных полей (постоянным магнитам, трансформаторам и др.);

должна быть предусмотрена возможность конвенции воздуха в зоне расположения элементов, выделяющих большое количество теплоты;

должна быть предусмотрена возможность легкого доступа к элементам, которые подбирают при регулировании схемы

Если элемент имеет электропроводный корпус и под корпусом проходит проводник, то необходимо предусмотреть изоляцию корпуса или проводника. Изоляцию можно осуществлять надеванием на корпус элемента трубок из изоляционного материала, нанесением тонкого слоя эпоксидной смолы на плату в зоне расположения корпуса, наклеиванием на плату тонких изоляционных прокладок.

Эти элементы могут работать при более жестких механических воздействиях, чем установленные.

В зависимости от конструкции конкретного типа элемента и характера механических воздействий, действующих при эксплуатации  (частота и амплитуда вибрации, значение и длительность ударных перегрузок и др.), ряд элементов нельзя закреплять только пайкой за выводы – их нужно крепить дополнительно за корпус.

При установке транзисторов в аппаратуре работающей в условиях вибрации и ударов, корпус должен быть приклеен к плате или к переходной втулке.

ЭРЭ должны располагаться на печатной плате так, чтобы осевые линии их корпусов были параллельны или перпендикулярны друг другу.

На платах с большим количеством микросхем в однотипных корпусах их следует располагать правильными рядами.

Зазор между корпусами должен быть менее 1.5 мм (в одном из направлений).

Элементы, имеющие большую массу, следует размещать вблизи мест крепления платы или выносить их за пределы платы и закреплять на шасси аппарата.

Так как печатные платы имеют малые расстояния между проводниками, то воздействие влаги может привести к таким ухудшениям сопротивления изоляции, при которых будет нарушаться нормальная работа схемы. Поэтому печатные узлы, которые будут работать в сложных климатических условиях, необходимо покрывать слоем лака.

Используемые для этого лаки должны иметь следующие свойства: хорошую адгезию к материалу платы и печатным проводникам; малую влагопоглощаемость; большое сопротивление изоляции; способность быстро высыхать при невысокой плюсовой температуре; отсутствие растрескивания в диапазоне рабочих температур.

3.3. Обоснование разработки компоновки печатной платы

Наиболее распространенная сборочная единица КТУ-1 (ячейка) представляет собою монтажную плату с установленными на ней корпусными ЭРЭ и другими элементами конструкции и внешней коммутации. Основными типами ЭРЭ в современных радиоаппаратах являются ИМС, поэтому в дальнейшем будем говорить лишь об установке ИМС на плату с печатным или проводным монтажом. При этом будем иметь в виду, что аналогичные общие требования предъявляются и к установке дискретных корпусных ЭРЭ.

Выбор варианта установки ИМС на плате ячейки определяет ряд основных параметров электронных устройств. Чем плотнее установка ИМС на плате, тем меньше будут габаритные размеры устройства, длины сигналь­ных связей и количество усилителей — ретрансляторов сигна­лов; однако при этом усложняется задача автоматизации проек­тирования и выполнения монтажа, а следовательно, и стоимость монтажной платы; требуются печатные платы с повышенной плот­ностью и елейностью монтажа, при этом увеличиваются перекрест­ные наводки между сигнальными цепями; делается более напря­женным температурный режим ИМС и усложняется решение задачи теплоотвода в устройстве в целом. Поэтому определение варианта уста­новки ИМС на плате должно производиться в соответствии с тре­бованиями к конкретному радиоэлектронному аппарату и с учетом характеристик ИМС, выбранных для обеспечения этих общих требований.

Для бортового оборудования аэрокосмических объектов с малой произ­водительностью, использующих микромощные ИМС низкого бы­стродействия, плотность установки ИМС на плате должна быть максимально возможной; это обеспечит необходимые минималь­ные габаритные размеры оборудования и при малых мощностях и низком быстродействии ИМС не приведет к каким-либо затруднениям в отношении тепловых режимов и помехоустойчивости.

Для больших универсальных ЭВМ высокой производитель­ности, в которых используют наиболее быстродействующие ИМС, потребляющие достаточно высокие мощности, чрезмерное повы­шение плотности компоновки ИМС нецелесообразно.

Для любых типов корпусов рекомендуется линейно-многоряд­ное расположение ИМС на плате с шагом, кратным 2,5 мм; зазоры между корпусами должны быть не менее 1,5 мм.

ИМС в корпусах со штыревыми выводами устанавливают только с одной стороны печатной платы; штыревые выводы мон­тируют в сквозные металлизированные отверстия, и концы выво­дов выступают с обратной стороны платы.

Корпуса ИМС с планарными выводами можно устанавливать на печатных платах с обеих сторон, монтируя выводы на металли­зированные контактные площадки, если это позволяет конструк­ция самой печатной платы.

Штыревые выводы располагают на корпусах ИМС с шагом 2,5 мм, планарные — с шагом 1,25 мм. Площадь и высота корпуса со штыревыми выводами при одинаковом числе выводов больше, чем у корпуса с планарными выводами. Учитывая возможность двусторонней установки ИМС в корпусах с планарными выводами на печатной плате, можно сказать, что при прочих равных усло­виях плотность компоновки ИМС в корпусах с планарными вы­водами может в несколько раз превосходить плотность компоновки ИМС со штыревыми выводами.

Однако корпуса со штыревыми выводами имеют существенное преимущество перед корпусами с планарными выводами — их установка и пайка на плате проще поддаются автомати­зации.

Из сказанного следует, что ИМС в корпусах со штыревыми вы­водами используют в ЭВМ общего применения, для которых ва­жен фактор низкой стоимости; ИМС в корпусах с планарными вы­водами, в основном, используют в военной, аэрокосмической и другой специальной аппаратуре.

На одной плате желательно устанавливать ИМС в корпусах с каким-либо одним типом выводов.

Штыревые выводы, запаянные в сквозные металлизированные отверстия, являются надежным механическим креплением кор­пуса ИМС на плате.

Планарные выводы удерживают корпус ИМС на плате в ре­зультате склейки контактных площадок с диэлектрическим осно­ванием; такое крепление может быть недостаточным для корпусов с большой массой, если аппаратура подвергается заметным меха­ническим воздействиям. В этих случаях должно предусматри­ваться дополнительное крепление корпуса ИМС к плате, напри­мер, с помощью клея.

Перед установкой ИМС на печатную плату выводы ИМС должны быть отформованы и подрезаны в соответствии с выбран­ным способом установки ИМС. При этом необходимо соблюдать требования технических условий на ИМС в отношении мини­мально допустимого расстояния от корпуса до места изгиба вы­вода, радиуса изгиба вывода, расстояния от корпуса до места пайки,

Формовку и подрезку выводов производят с помощью спе­циальных приспособлений, обеспечивающих неподвижность вы­водов в местах их соединения с корпусом ИМС; это делается во избежание нарушения герметичности корпуса и последующего выхода ИМС из строя.

Рис. 3.1. Виды формовки выводов  и установки   ИМС в   корпусах

401.14 (а —в) и 301ПЛ14-1  (г):

а — без зазора; б — с зазором; в — с прокладкой; г — с гибкой и планарной пайкой выводов

На рис.3.1 показаны применяемые виды формовки выводов и установки ИМС в различных корпусах. Изоляционные прокладки устанавливают под корпуса ИМС в тех случаях, когда необходимо их механическое крепление к плате. При этом под корпусом ИМС проходят металлические проводники сигнальных цепей или це­пей питания. Металлические прокладки под корпусами ИМС ис­пользуются в качестве радиаторов; для улучшения теплоотводящих свойств таких прокладок их поверхность может быть развита за пределами корпуса ИМС; один такой радиатор может исполь­зоваться для установки нескольких ИМС. Между металлической прокладкой-радиатором и внешним слоем печатного монтажа платы помещается изоляционная прокладка.

При объединении на одной печатной плате ИМС в корпусах с планарными и штыревыми выводами последние можно отгибать на 90° и припаивать их как планарные к контактным площадкам. Таким же образом можно припаивать круглые выводы отдельных дискретных ЭРЭ (например, конденсаторов фильтрации цепей питания). Площадь контактных площадок под такими выводами должна быть достаточно большой, чтобы контактные площадки не отслоились от диэлектрического основания платы в резуль­тате перегрева при пайке более массивного вывода. Сам элемент должен быть закреплен за корпус (клеем, специальным держате­лем), чтобы пайка вывода не несла на себе механической на­грузки

Основной же способ закрепления дискретных ЭРЭ с круг­лыми выводами на печатной плате — пайка выводов в металли­зированные отверстия. Используемые виды формовки выводов и установки дискретных ЭРЭ различной конструкции показаны на рис.3.2.

Рис.3.2. Виды   формовки   выводов   и   установки дискретных  ЭРЭ  с  круглыми  выводами.

Если ячейку не исполь­зуют в качестве ТЭЗ, а она является только конструктивным элемен­том сборочной единицы более высокого уровня, то на нее устанавливают контакты для пайки или накрутки внешних соеди­нительных проводов. Если же ячейка предназначена для использования в ка­честве ТЭЗ, то для ее внеш­ней коммутации на плату устанавливается разъем. При установке ЭРЭ на печатные платы необхо­димо обеспечивать:

работоспособность ЭРЭ в условиях, соответству­ющих эксплуатационным требованиям к ЭВМ;

удаление ИМС и других полупроводниковых приборов от наи­более тепловыделяющих элементов;

необходимые зазоры вокруг ЭРЭ и радиаторов с большим вы­делением тепла для прохождения охлаждающих потоков воздуха; установку ЭРЭ на изоляционные прокладки,  если под ними проходит печатный монтаж;

защиту ЭРЭ и монтажа, расположенных вблизи ручек, исполь­зуемых для вставления и вынимания ячеек;

свободный доступ к любому ЭРЭ для его замены в ячейках ремонтопригодной конструкции, а также подборочным и регу­лировочным элементам;

возможность выполнения технологических процессов ручной или механизированной установки ЭРЭ и групповой пайки;

возможность нанесения влагозащитного покрытия без попада­ния на места, не подлежащие покрытию (контакты разъемов, контрольные точки);

расположение наиболее массивных ЭРЭ и элементов конструк­ции (радиаторов, разъемов) ближе к местам крепежа платы для ячеек ЭВМ, работающих при значительных механических на­грузках.

В ячейках различной конструкции и назначения предусматри­ваются: ручки или специальные отверстия и прорези в печатных платах для вынимания ячеек из ЭВМ, контрольные точки для определения правильности функционирования ячеек в составе ЭВМ или при их предварительной проверке, внешние контакты ячеек под пайку или накрутку в составе сборочных единиц более

высоких КТУ, шины подводки напряжений питания к ИМС, ме­таллические накладки и рамки для окантовки печатных плат ячеек-ТЭЗ, используемых в условиях значительных механиче­ских воздействий, узлы крепления печатных плат к таким наклад­кам и рамкам, замки, обеспечивающие надежное крепление ра­мочных ячеек-ТЭЗ в составе ЭВМ.


Литература:

1.     Блаут-Блачёва В.И.

Технология производства радиоаппаратуры. Учебник для техникумов. М., «Энергия», 1972, 376с.

2.     Горшков Н.Н.

Полупроводниковые приборы: Транзисторы, справочник, 2-е изд., перераб.-М.:Энергоатомиздат,1985г –904с.

3. Лернер М.М.

Выбор конденсаторов для радиоэлектронных устройств, М., «Энергия», 1970.

4. Малинин Р.М.

Справочник радиолюбителя конструктора Изд. 2-е., перераб.-М.:Энергия, 1977г,752с.

5.Павлов С.П.

Охрана труда в радиоэлектронной промышленности: Учебник для техникумов.-2-е изд., перераб. и доп.- М.: Радио и связь, 1985.-200с.

6.Фрумкин Г.Д.

Расчёт и конструирование радиоэлектронной аппаратуры :учеб. Пособие для радиотехнич. Спец. Техникумов. 4-е изд., перераб. и доп. –М.:высш.шк., 1985г-287с.



зона

Поз.обознач. Наименование Кол-во. Примечание

 

Пульт дистанционного управления

 

Резисторы