Лекции по Математическому анализу
/>Произведение бесконечно больших на ф-ию, имеющую отличный от нуля предел - бесконечно большая.
Ф-ия, обратная величине бесконечно большой – есть бесконечно малая, и наоборот.
Доказательство 2):
Доказательство 3):
Односторонние пределы в конечной точке и их связь с пределом в этой точке.
В определении предела окрестности точки а – симметричный интервал с центром в этой точке, т.е. требуется существование значений ф-ий как справа от точки а , так и слева от нее.
Когда а – граничная точка D(f)- такая ситуация невозможна. В этом, случае вводится понятие одностороннего предела, в определении которого фигурирует левые и правые полуокрестности точки а
- левосторонний предел, если в левой полуокружности точки А, значения ф-ии лежат в -окрестности точки А
Аналогично дается определение правостороннего предела.
Теорема: Для того, чтобы в точке а существовал предел ф-ии, необходимо и достаточно существования и равенства левостороннего и правостороннего пределов
Доказательство:
Необходимость:
Достаточность:
Числовые последовательности
Задача, по которой каждому N числу, ставится в соответствие единственное вещественное число – называется числовой последовательностью.
Числовая последовательность – ф-ия натурального аргумента.
Обозначается:
Последовательность, множество значений которой состоит из одного числа – стационарная.
Так как числовая последовательность – не симметричное множество, то для него не существует понятия четности, нечетности, периодичности. Зато сохраняются свойства, связанные с упорядоченностью.
Свойства:
Ограниченность.
последовательность ограничена сверху, если
последовательность ограничена снизу, если
последовательность ограничена, если
Монотонность.
последовательность возрастает, если
последовательность убывает, если
последовательность не убывает, если
последовательность не возрастает, если
Предел последовательности
Т.к. N числа имеет 1 т. бесконечности, то для числовой последовательности существует
Замечания:
А может быть конечным или бесконечным
Если последовательность имеет конечный предел, то она называется сходящейся, а если нет – расходящейся.
Общие свойства сходящихся последовательностей аналогичны свойствам ф-ий, имеющих конечный предел.
Арифметические свойства сходящихся последовательностей аналогичны свойствам ф-ий, имеют конечный предел
Переход к пределам в неравенствах, для сходящихся последовательностей аналогичен ф-ям, имеющим конечный предел.
Определение бесконечно малых и бесконечно больших последовательностей и их свойства аналогичны соответствующим определениям и свойствам ф-ии непрерывного аргумента.
Критерии существования предела последовательности
1. Критерии Коши (произведения последовательностей)
Для существования предела последовательностей необходимо и достаточно, чтобы для любой..............
Последовательность, для которой выполняется признак Коши – фундаменталная
2. Критерий Вейерштрасса (монотонность последовательности)
а) неубывающие последовательности, ограниченные сверху, имеют предел.
б) не возрастающие последовательности, ограниченные снизу, имеют предел.
Доказательство(а):
Переход к пределу в неравенстве
Теорема: Пусть f(х) и (х) имеют конечные пределы в т. y=a, тогда справедливо:
Доказательство:
Пусть , тогда по общему свойству №6
,
а это противоречит 1
Замечание:
Из утверждения №3 следует, что предел неотрицательной ф-ии является неотрицательным.
При пределов к противоположным можно обе части умножать на (-1).
Теорема 2(о двух миллиционерах ) Пусть в некоторой области Д выполняется система неравенств и а – предел точки.
Пусть существуют равные пределы ,
тогда существует .
Доказательство:
Первый замечательный предел
Доказательство: докажем для справедливость неравенства
В силу четности входящих в неравенство ф-ий, докажем это неравенство на промежутке
Из рисунка видно, что площадь кругового сектора
, так как х>0, то ,
2. следовательно, что
Покажем, что
Докажем, что
Последнее утверждение:
Второй замечательный предел
Понятие касательной к прямой.
Прямая, проходящая через две точки кривой – секущая.
Предельное положение секущей, которое она занимает при стремлении т. М к т. М0 называется касательной к кривой в т. М0
Бесконечные пределы ф-ии.
Если в общем определении предела через окрестности положить в качестве А бесконечно удаленную точку, то получим определение бесконечного предела.
Так как различают три вида бесконечно удаленных точек, то существуют три определения:
1.
2.
3.
Понятие непрерывности ф-ии.
Непрерывность – такое свойство ф-ии, как отсутствие точек разрыва у графиков этой ф-ии. Т.е. строится единственной непрерывной линией.
График непрерывной ф-ии ; График ф-ии, разрывной в т. С;
1.Ф-ия называется непрерывной в точке х0 , если предел в данной точке совпадает со значением ф-ии в этой же точке
2.
3. Разность -приращение аргумента в точке х0
4. Разность - приращение ф-ии в точке х0 вызывает приращение аргумента
5. Ф-ия называется непрерывной в точке х0 , если бесконечно малому аргументу соответствует бесконечно малое значение ф-ии в точке х0 .
Общие свойства ф-ии, непрерывной в точке.
Представим ф-ию с помощью бесконечно малых
1.
2.Пусть ф-ия непрерывна в точке х0 и ее значение в этой точке отлично от нуля, то существует целая окрестность х0 , в которой ф-ия не равна нулю и сохраняет знак f(x0)
sign(х)(сигнум)
Доказательство:
а)
б)
Из а) и б) следует:
Непрерывность и арифметические операции
Пусть и непрерывна в т. х0 , тогда справедливо:
Сумма этих ф-ий непрерывна в т. х0 ;
- непрерывна в точке х0
2. Произведение этих ф-ий непрерывно в т. х0
- непрерывна в точке х0
3. Отношение этих функций непрерывно в тех точках, в которых знаменатель отличен от нуля, т.е. если знаменатель 0.
Доказательство:
Непрерывность сложной ф-ии.
Пусть:
|
тогда сложная ф-ия - непрерывна в т. х0 . |
Доказательство:
А).
Б).
из А) и Б) следует:
Sl.
Непрерывность ф-ии на множестве.
Df. Ф-ия непрерывна на множестве Х , если она непрервна в каждой точке этого меожества.
Непрерывность обратной ф-ии:
Пусть - непрерывна и строго монотонна на промежуте Х , тогда справедливо:
*****
На промежутке Y существует непрерыная обратная ф-ия .
Характер монотонности обратной ф-ии такой же как и прямой.
Непрерывность элементарной ф-ии:
**********
Доказательство непрерывности основной элементарной ф-ии tg и ctg , следует из свойств непрерыности элементарных ф-ий.
Непрерывность log, arcsin, arccos, arstg следует из определения непрерывности обратной ф-ии.
Df Элементарные ф-ии, полученные из основных элементарных ф-ий с помощью арифметических операций, взятых в конечном числе,********
Характеристика точек разрыва ф-ии.
1. Точка устранимого разрыва.
D(f) т. х0 называется точкой устранимого разрыва ф-ии , если она не определена в этой точке, но имеет конечный предел.
Ф-ию можно сделать непрерывной в этой точке, доопределив ей значение в этой точке равным пределом.
2. Точка разрыва первого рода.
D(f) х0 – точка разрыва первого рода, если существует конечный левосторонний и правосторонний предел не равные между собой.
Разницу (b-a)называют скачком ф-ии в т. х0
3. Точка разрыва второго рода.
*********************************
Односторонняя непрерывность ф-ии.
Если в D(f)1 непрерывности предел заменить односторонним пределом, то получим определение односторонней непрерывности ф-ии.
Ф-ия называется непрерывной в точке х0 справа, если правосторонний предел совпадает со значением ф-ии.
Ф-ия называется непрерывной в точке х0 слева, есди левосторонний предел совпадает со значением ф-ии.
Например:
- исследуем предел ф-ии справа и слева:
ф-ия непрепывна в точке х=0.
Для непрерывности в точке х0 необходимо и достаточно, чтобы она была непрерывна слева и справа в этой точке.
Свойства ф-й, непрерывных на отрезке
Ф-ия называется непрерывной на отрезке [a,b], если она непрерывна на интервале(a,b) и в т. а непрерывна справа а в т. b – слева.
Т1: Ф-ия , непрерывная на [a,b], ограничена на этом отрезке.
- непрерывная на [a,b]
D(f) : число М называется наибольшим значением ф-ии на отрезке [a,b], если существует такое число .
D(f) :точка называется наименьшим значекнием ф-ии на [a,b], если
Т2 : ф-ия , непрерывная на [a,b],имеет на [a,b] наибольшее и наименьшее значения.
Т3 : *************
Sl1 : (f) ф-ии, непрерывной на отрезке, является отрезок
Sl2 (Т3): ф-ия, непрерывная на отрезке [a,b], имеющая различные по знаку значения, на его границах обязательно обращается в ноль, хотя-бы в одной точке этого отрезка.
*******************************************
Дифференциальное счисление.
Ф-ия одной переменной.
1. Задачи, приводящие к понятию производной.
3.1. Задача о вычислении скорости точки, движущейся вдоль прямой.
Пусть точка движется вдоль прямой х.
****************************************** - l-единичный вектор, задающий направление вдоль прямой.
3.2 Построение касательной к кривой с уравнением в т. х0 .
********************
Задачи, различные по смыслу, из разных областей науки, свелись к вычислению одного и того же предела. В таких случаях в математике абстрагируются от крнкретных задач и изучают отдельно предел ф-й.
Определение призводной ф-ии в точке.
Обозначение:
Df1 Производной ф-ии в т. х называют предел отношения приращения ф-ии в этой т. к приращению аргумента, при стремлении последнего к нулю.
Пример:
- непрерывная.
Степень ф-ии с вещественным показателем.
Справка: .
Геометрический смысл производной.
Из второй задачи следует, что поизводная ф-ии в т. х0 =тангенсу угла наклона касательной, проведенной к графику ф-ии в этой точке.
Sl1 : Уравнение касательной к кривой. Его можно написать, зная точку, через которую она проходит, и угловой коэффициент
где x и y – координаты т. на касательной.
Sl2 : Уравнение нормали. Его можно написать, зная точку, через которую она проходит и угловой коэффициент
, x и y – точки на нормали.
Механический смысл производной.
************
Дифференцируемость ф-ии.
Df : Ф-ия дифференцируема в точке х0 , если приращение ф-ии в точке сможет быть представлено в виде:
, А – const.
Dh: Для дифференцирования ф-ии в т. х0 , необходимо и достаточно, чтобы в этой точке существовала производная.
Доказательство: (необходимость)
(достаточность):
Производная суммы, произведения, частного.
Dh:Пусть ф-ия и дифференцируемы в точке х0 , тогда в этой точке дифференцируемы их сумма, произведение и частное, причем выполняются формулы:
, если
Лемма: Ф-ия, дифференцируема в точке х0 , непрерывнна в этой точке.
- дифф. в т. х0
обратное утверждение неверно!!!
Производная от const ф-ии =0.
Если
Доказательство:
Zm1: При вычислении производной, константу можно выносить за знак производной.
Zm2: Данные формулы можно рассматривать на большее число слагаемых и сомножителей.
Df: Линейным колебанем системы из т. ф-ий называется сумма призведения этих ф-ий на производную и постоянную.
Zm: Свойство линейности производной.
Из доказанных свойств, следует, что производная от линейных колебаний ф-й = линейные комбинации призводных.
Производная от обратной ф-ии.
Dh: Пусть в точке х0 имеет:
на промежутке, содержащем х0 , обратную ф-ию
тогда в точке х0 существует , равная
Производная от обратной ф-ии.
Dh: Пусть в точке х0 имеет:
на промежутке, содержащем х0 , обратную ф-ию
тогда в точке х0 существует , равная
Доказательство:
1. Пустьи двум различным значениям х соответствует е различных значений y .
2. Пусть дифф. в точке х0 , тогда
3. т.к.
Производная от сложной ф-ии.
Dh: Пусть:
- дифф. в точке y0 .
- дифф. в точке х0 .
тогда сложная ф-ия - дифф. в точке х0 и справедлива формула:
Доказательство:
1. - дифф. в точке y0
2. - дифф. в точке х0
3. - дифф. в точке х0 а значит непрерывна в этой точке.
Односторонние производные.
Заменим в определении производной предел – односторонним пределом, получится определение односторонней производной.
Производная от параметрически заданной ф-ии.
Df: Ф-ия называется заданной параметрически, если ее аналитическое выражение может быть представлено в виде:
t- параметр.
Dh: Пусть ф-ия задана параметрически, где и дифф. в точке х0 , тогда
Доказательство: Предположим. что имеет обратную ф-ию , тогда - сложная ф-ия от х и определению сложной ф-ии имеет:
Производные высших порядков.
Df: Пусть ф-ия дифф. на Х , то есть дифф. в каждой т. Х .
Каждому значению Х соответствует единственное значение , т.е. получаем как ф-ию, заданную на Х.
Если она окажется дифф. на Х, то мы можем вычислить следующую , которая будет называться второй и т.д.
Df: Производной n-го порядка от ф-ии называется первая производная от производной n-1 порядка.
Пример:
Теоремы о дифф.