Разработка привода и системы управления путевой машины
Размещено на /
ФАЖТ РФ
Разработка привода и системы управления путевой машины
Курсовая работа по дисциплине «Приводы и системы управления путевой машины»
Пояснительная запискa
Руководитель: Разработал: студент
__________ ___________
(подпись) (подпись)
________________ ________________
(дата проверки) (дата сдачи на проверку)
Краткая рецензия:
____________________________________________________________________________________________________________________________________________________
__________________________ ___________________________
(запись о допуске к защите) (оценка, подписи преподавателей)
2008
Содержание
1 Обзор приводов и систем управления путевых машин. Обоснование принятых схем и решений
2 Расчет параметров транспортера
3 Расчет параметров привода транспортера
4 Разработка принципиальной гидравлической схемы машины
5 Расчет параметров и подбор элементов гидропривода
6 Расчет параметров и подбор механических компонентов привода и электродвигателей
Список использованных источников
1 Обзор приводов и систем управления путевых машин. Обоснование принятых схем и решений
Выбор типа привода является одной из важнейших задач, которое необходимо решать при создании путевой машины. Тип привода определяется: характером загрузки привода, кинематикой перемещения, скоростью и другими характеристиками рабочего органа; условиями эксплуатации, механических воздействий, ресурсов и экономичности.
На путевых машинах применяются три типа привода: гидравлический, электрический и пневматический.
Наиболее распространен гидравлический привод. У гидропривода небольшие габариты и масса гидроагрегатов, простая конструкция защиты узлов от перегрузок, он легко управляется; может передавать большие усилия и мощности, обладает малой инерцией, высокой приемистостью, имеет небольшое время запаздывания при исполнении командных сигналов, малые маховые массы гидродвигателей вращательного действия (10-12% маховых масс электродвигателей той же мощности). Эти приводы широко применяются на путевых машинах, вытесняя пневмо- и электроприводы.
Недостатки гидропривода: большая жесткость внешних характеристик, требует высокой точности изготовления элементов (возможны утечки рабочей жидкости), проникновение воздуха в рабочую жидкость с нарушением равномерного движения гидроагрегатов.
Существуют объемные и гидродинамические гидроприводы, В первых в качестве выходного звена используют гидроцилиндры (путеукладчики, шпалоподбивочные машины и др.) и гидродвигатели. Гидродинамические приводы применяются для передачи и изменения крутящего момента в ходовых трансмиссиях мотовозов и дрезин.
Наиболее распространенные объемные гидроприводы по системе питания насосов – открытые, закрытые и комбинированные.
Открытая система проста, обеспечивает хорошие условия для охлаждения и отстоя жидкости, но в ней возможна кавитация, в нее проникает воздух; она имеет большие габариты. У закрытой системы давление при всасывании выше атмосферного, что предотвращает кавитацию и позволяет использовать скоростные малогабаритные насосы. Исключено попадание воздуха в систему. Закрытая система сложнее; в ней хуже охлаждается рабочая жидкость. В комбинированной системе часть отработавшей жидкости в гидродвигателе сливается в резервуар, а другая часть вместе с жидкостью, подаваемой подпиточным насосом, поступает в основной насос.
Электрический привод широко применяют на путевых машинах. Используют двигатели переменного и постоянного тока. Наиболее распространены электродвигатели переменного тока асинхронные с короткозамкнутым ротором. Для поступательного перемещения рабочих органов путевых машин широко используют сочетание электродвигателя, редуктора (червячного, конического, цилиндрического) и винта. Такой привод установлен на электробаластерах, выправочно-подбивочно-отделочных машинах, щебнеочистительных машинах. Его достоинства – простота, надежность, реверсивность, компактность при большой нагрузочной способности, возможность обеспечения большой точности перемещений, а также автоматизации управления рабочим органов. Недостатки – большие потери на трение и низкий К.П.Д., невозможность применения при больших скоростях перемещения.
Пневматический привод применяют на снегоочистительных, снего- и землеуборочных машинах, стругах, путеизмерителях, рельсошлифовальных вагонах. На прицепных машинах, перемещаемых локомотивом, сжатый воздух и пневмоприводу поступает от компрессора локомотива, в результате чего на путевой машине нет силовой установки и компрессора, что упрощает и удешевляет конструкцию машины, облегчает уход и обслуживание. На самоходных машинах устанавливают компрессор.
Пневмосистема путевой машины состоит из подводящих воздухопроводов, соединенных с локомотивом, предохранительных клапанов, кранов управления, разводящих трубопроводов, пневмоцилиндров и пневмодвигателей. Пневмопривод прост и дешев. Его недостатки – громоздкость исполнительных механизмов и малая скорость движения поршня.
Принимая во внимание вышеизложенное, а также ориентируясь на исходные данные и условия работы, выбор останавливаем на гидравлическом приводе. Это позволит выполнить все поставленные для разработки условия, а также достаточно просто увяжется с системой управления.
Под системой управления понимается совокупность устройств и схемных решений для разрешения вопросов управления приводами и их защитой от нерабочих нагрузок. В задании оговорено, что следует предусмотреть защиту: 1) при наезде рабочим органом (транспортером) на препятствие; 2) от включения транспортера, если он не установлен в рабочее положение.
2 Расчет параметров транспортера
Цель расчета:
- определение производительности транспортера;
- расчет параметров и выбор ленты, барабана и роликоопор.
Условия расчета:
- гидроцилиндр изменения угла наклона транспортера закрепляется на его середине;
- угол наклона транспортера при переводе из транспортного положения в рабочее (max) равен ;
- Транспортер имеет желобчатое сечение с углом наклона боковых роликов 20˚.
Рисунок 1 – Схема для определения параметров транспортера
Производительность транспортера Q, [2]:
, (1)
где скорость путевой машины, 230 м/с ; А – площадь вырезаемого балласта:
, (2)
где в – ширина вырезки балласта, в=1,8м ; h – глубина вырезки балласта, h=0,75м.
.
Производительность П, т/ч [2]:
(3)
где - плотность щебня с загрязнителями, .
Ширина ленты при транспортировании насыпных грузов В, м [ ]:
, (4)
где - скорость ленты, предварительно принимаем по [2], ; k=240 – коэффициент, зависящий от угла естественного откоса груза [2]; =0,9 – коэффициент, зависящий от угла наклона транспортера.
м.
Принята стандартная ширина ленты В=1200мм.
Принята конвейерная лента: Лента – 2.1 – 1200 – 4 – БКНЛ – 100 – 6 – 2 ГОСТ 20 – 85(лента типа 2.1 общего назначения с шириной 1200мм, с четырьмя прокладками из ткани БКНЛ – 100, с толщины резиновой обкладки рабочей поверхности мм и нерабочей мм).
Уточнена скорость ленты , м/с:
, (5)
где В – ширина ленты по расчету, м; - стандартная ширина ленты, м.
м/с.
Диаметр барабана , мм [ ];
, (6)
где к=140 – коэффициент для определения диаметра приводного барабана; z- число прокладок в ленте.
мм.
Принят стандартный диаметр барабана мм по ГОСТ 22644.
По насыпной плотности щебня, ширине ленты и области применения принята роликоопора [ ]: Роликоопора Ж 120 – 159 – 20 ГОСТ 22645 – 77 (роликоопора верхняя желобчатая типа Ж для ленты шириной 120 см, с диаметром ролика 159 мм и углом наклона бокового ролика ).
3 Расчет параметров привода транспортера
Цель расчета: определение мощностей привода транспортера, поворота и наклона транспортера.
Условие расчета: обеспечение на рабочих органах тягового усилия, момента для поворота и силы для наклона транспортера.
Мощность привода транспортера , кВт [2]:
, (7)
где - тяговое усилие транспортера, Н[2]; =0,93 – кпд приводного барабана.
, (8)
где ω=0,04 – коэффициент сопротивления; -горизонтальная проекция длины конвейера, м:
м;
q – погонная масса груза, кг/м:
, (9)
где - площадь поперечного сечения груза на транспортере, :
;
- погонная масса движущихся частей конвейера, кг/м:
, (10)
где - погонная масса ленты, кг/м:
, (11)
где ρ=1100кг/м – плотность ленты; В – ширина ленты, м; δ – толщина ленты, м.
;
- погонная масса вращающихся частей рабочей ветви; - погонная масса вращающихся частей холостой ветви;
H – высота подъема груза, м:
м.
.
кВт.
Мощность привода поворота транспортера , кВт [2]:
, (12)
где - крутящий момент, ; - угловая скорость, .
.
Мощность привода наклона транспортера , кВт [2]:
, (13)
где - сила на штоке гидроцилиндра, ; - скорость штока, .
Рисунок 2 – Схема для определения силы на штоке гидроцилиндра
Сумма моментов относительно точки подъема транспортера:
;
Отсюда, .
;
;
.
.
.
4 Разработка принципиальной гидравлической схемы машины
В данной курсовой работе разработана двухпоточная схема гидропривода машины. Эта схема изображена на чертеже ППМ М511.26.00.00.00.ГЗ.
Машина имеет три рабочих органа:
Рабочий орган вращательного действия - РО1 , имеющий привод от гидромотора, рабочий орган поступательного действия - РО2 , приводимый в действие гидроцилиндром, рабочий орган вращательного действия РО3, приводимый гидромотором.
Гидродвигатели приводятся в движение от гидронасосов. Машина имеет два гидронасоса.
В приводе рабочих органов используются распределители:
В приводе РО1 распределитель с закрытым центром, управление электрогидравлическое, в приводе РО2 распределитель предназначенный для гидрозамка, управление электрическое, в приводе РО3 – с закрытым центром, управление электрическое.
Наличие у распределителей сервоуправления значительно облегчает работу машиниста.
Для включения в работу РО1 машинист нажатием на кнопку управления распределителя Р1, подает напряжение на обмотку электромагнита распределителя, распределитель переключается в рабочую позицию и направляет поток жидкости к гидромотору М1. Жидкость идет через элементы : Б-Н1-Р1-М1-Р1-ТС- АТ-Ф-Б
Для остановки рабочего органа РО1 машинист, повторным нажатием на кнопку управления Р1, размыкает электрическую цепь обмотки электромагнита, в этот момент Р1 переключается в нейтральную запирающую позицию, срабатывает клапан первичной защиты КП1, автоматически переводимый в режим переливного. Жидкость от насоса идет через элементы : Б- Н1-КП1-ТС-АТ-Ф-Б.
При включении в работу РО2 машинист нажатием на кнопку управления распределителя Р2, подает напряжение на одну из обмоток электромагнитов распределителя, распределитель переключается в рабочую позицию и направляет поток жидкости к гидроцилиндру Ц. Жидкость идет через элементы : Б-Н2-Р2-ГЗ-Ц-ГЗ -Р2 -ТС- АТ-Ф-Б
Для остановки рабочего органа РО2 машинист, повторным нажатием на кнопку управления Р2, размыкает электрическую цепь обмотки электромагнита, в этот момент Р2 переключается в нейтральную запирающую позицию, срабатывает клапан первичной защиты КП2, автоматически переводимый в режим переливного. Жидкость от насоса идет через элементы : Б- Н2-КП2-ТС-АТ-Ф-Б.
Для фиксации гидроцилиндра Ц в определенном положении при нейтральной позиции распределителя, в схему введен гидрозамок ГЗ.
Включение рабочего органа РО3 аналогично включению РО2.
Для защиты элементов системы от инерционных перегрузок при торможении, а также от реактивных перегрузок, которые могут возникнуть в запертых гидродвигателях М1,М2 и Ц, в схему включены клапаны вторичной защиты ОПК1, ОПК2 и блок БОПК3, состоящий из обратно – предохранительных клапанов. Давление настройки клапанов вторичной защиты выше давления настройки первичной защиты на 2МПа.
Вторичная защита РО1 и РО3 установлена между силовыми линиями гидродвигателя за распределителем. Вторичная защита РО2 установлена между гидродвигателем и гидрозамком.
Клапан ОПК1 срабатывает, в момент торможения РО1, когда вал гидромотора вращается по инерции, мотор переходит в режим насоса. Тогда жидкость идет через элементы:
Клапан ОПК2 срабатывает при перегрузке в поршневой полости. Жидкость идет через элементы:
Блок БОПК3 срабатывает в момент торможения РО3, когда вал гидромотора вращается по инерции, мотор переходит в режим насоса. Тогда жидкость идет через элементы:
Гидросистема защищена от активных и инерционных перегрузок с помощью клапанов первичной защиты КП1 и КП2. При срабатывании КП1 рабочая жидкость идёт: Б -Н1-КП1-ТС-АТ-Ф1-Б, при этом гидромотор и рабочий орган останавливаются.
Данный клапан является управляемым, непрямого действия. Клапан подсоединяется входом к напорной линии насоса, а выходом со сливной линией, до фильтра.
Работа клапана КП2 аналогична работе КП1.
Для охлаждения рабочей жидкости в летний период в сливную линию перед блоком фильтров включён теплообменный аппарат АТ, который поддерживает температуру РЖ +70 0С.
Перед АТ установлен термостат. Он срабатывает при повышении температуры жидкости выше +50 0С и направляет ее поток через АТ.
Установка манометров МН1 и МН2 позволяет машинисту контролировать давление в напорных линиях. Температура контролируется с помощью термометра Т, установленного в баке Б.
Чистота РЖ обеспечивается непрерывной фильтрацией полнопоточным фильтром Ф1. Засоренность фильтра машинист может контролировать при помощи контрольной лампы, связанной с датчиком, установленном в фильтре.
Для диагностирования гидроаппаратуры машины в гидросхему включены быстроразъемные соединения БР1 –БР9.
Заправка бака рабочей жидкостью осуществляется внешним насосом, через фильтр.
5 Расчет параметров и подбор элементов гидропривода
Цель расчета: определение параметров и выбор дизеля, насоса, гидродвигателей, рабочей жидкости, трубопроводов, распределителей, фильтров, предохранительных клапанов и других элементов.
Условие расчета: обеспечение на рабочих органах заданных движущих сил, вращающих моментов, скоростей и перемещений при установившейся работе гидродвигателей и оптимальной температуре рабочей жидкости.
Определение номинального давления. Выбор насосов и их параметров
Номинальное давление для насоса привода транспортера, МПа:
(14)
где - мощность привода транспортнра, кВт.
.
Номинальное давление для насоса привода поворота транспортера, МПа:
.
Номинальное давление для насоса привода наклона транспортера, МПа:
.
Принято номинальное давление из наличия комплектующих .
Мощности приводов насосов, кВт:
(15)
привод путевой машина транспортер
где η=0,75 – значение полного кпд новой гидропередачи.
кВт;
кВт;
кВт.
Для приводов выбран аксиально-поршневой насоса 310.28. Для привода поворота и наклона аксиально-поршневой насоса 310.12. Насос выбран по необходимой мощности на их валу. Характеристики насосов сведены в таблицу 1.
Таблица 1 – Характеристики аксиально-поршневых насосов с наклонным диском