Трифазний асинхронний двигун типу 4А112М4У3 з коротко замкнутим ротором

коротко замкнутим ротором" width="358" height="37" align="BOTTOM" border="0" />


де Iхх,а – активна складового струму


де РЭ1хх – електричні втрати в статорі при холостому ході:



Коефіцієнт потужності при холостому ході:



Коефіцієнт корисної дії двигуна:



Отриманий коефіцієнт корисної дії двигуна перевищує табличне значення ,яке дорівнює , на 1.9% .


8. Розрахунок робочих характеристик


Для розрахунку робочих характеристик використовується уточнена Г образна заступна схема. Розрахунок наведений у табл. 8.2. Докладний розрахунок наведений для ковзання S=Sн=0,033, яке визначено методом інтерполяції за допомогою MatLab Робочі характеристики спроектованого двигуна наведені на Рисунку 8.2.

Рисунок 8.1 – Уточнена Г-образна заступна схема асинхронної машини

Параметри заступної схеми /2, (6-179), (6-180)/:



Відносні значення параметрів /2, c. 205/:



|γ| не перевищує 1, тому реактивною складовою коефіцієнта можна знехтувати /2, c. 210/, тоді приблизно за /2, (6-218)/:


Активна складового струму синхронного холостого ходу:



Враховуючи значення |γ|, яке не перевищує 1, можна використати приблизний метод за [1, (6-223)]:


;

;


Втрати не змінні при зміні ковзання:



Приймемо попередньо: По формулам /2, табл. 6-26/ розрахуємо робочі характеристики за допомогою MatLab та знайдемо Sн:


Активна складова струму:



Реактивна складова струму:



Повний струм:



Приведений струм ротора:



Електричні втрати в статорі:



Електричні втрати в роторі:


Додаткові втрати:



Сумарні втрати:



Номінальна потужність:



Коефіцієнт корисної дії:



Таблиця 8.1 – Вхідні данні для розрахунку робочих характеристик

Параметр Значення Од. вимір. Параметр Значення Од. вимір. Параметр Значення Од. вимір.
P2н 5500 Вт I0a 0,22 А a' 1,053 Ом
U1н 220 В I0p=Iμ 3,314 А a 0,91 Ом
I1н 11,47 А r1 0,89 Ом b' 0 Ом
2p 4
r2' 0,697 Ом b 4,194 Ом
Pст+Pмех 196,07 Вт c1 1,026 Ом
Pдоб.н. 32,164 Вт


Таблиця 8.2 – Данні розрахунку робочих характеристик

Розрахункова

величина

Од.

вимір.

Ковзання


0,005 0,01 0,015 0,02 0,025 0,03 0,033 0,035 0,04
a' r2'/s Ом 109,04 54,52 36,35 27,26 21,81 20,97 21,12 15,58 13,63
b 'r2'/s Ом 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
R Ом 147,6 74,2 49,8 37,6 30,2 25,4 23,15 21,9 19,2
X Ом 4,192 4,192 4,192 4,192 4,192 4,192 4,192 4,192 4,192
Z Ом 147,6 74,4 50,0 37,8 30,5 25,7 23,53 22,3 19,7
I2'' А 1,49 2,958 4,402 5,818 7,204 8,559 9,354 9,881 11,168
cosφ2' - 0,999 0,998 0,997 0,994 0,991 0,987 0,984 0,982 0,977
sinφ2' - 0,0284 0,0564 0,0839 0,111 0,127 0,163 0,178 0,188 0,213
I1a А 1,709 3,174 4,606 6,002 7,356 8,665 9,424 9,925 11,133
I1р А 3,356 3,481 3,683 3,959 4,303 4,71 4,982 5,175 5,691
I1 А 4,71 5,898 7,19 8,52 9,862 10,162 10,66 12,503 12,897
I2' А 1,528 3,036 4,515 5,968 7,39 8,78 9,598 10,136 11,456
P1 Вт 1128,2 2094,5 3040,1 3961,3 4855,1 5718,8 6432,75 6750,1 7347,5
PЕ1 Вт 37,9 59,2 92,9 138 193,9 259,7 351,27 384,5 417,4
PЕ2 Вт 4,9 19,3 42,6 74,5 114,2 161,2 219,07 244,8 274,4
Pдоб Вт 5,6 10,5 15,2 19,8 24,3 26,2 32,164 33,8 36,7
∑P Вт 244,5 285 346,8 428,4 528,5 645,5 798,57 858,1 924,6
P2 Вт 883,8 1809,5 2693,3 3533 4326,6 5073,2 5634.18 5772 6422,9
η - 0,783 0,864 0,886 0,892 0,89 0,883 0,876 0,874 0,872
cosφ - 0,454 0,674 0,781 0,835 0,863 0,879 0,884 0,887 0,89

Для наочності побудова характеристик виконана в умовних одиницях


9. Розрахунок пускових характеристик


Скористаємося заступною схемою для розрахунку пускових характеристик, яка представлена на рисунку 9.1. Розрахунок характеристик наведений у табл. 9.2. проводиться аналогічно з п. 8 за допомогою MatLab. Докладний розрахунок наведений для ковзання S=1. Пускові характеристики спроектованого двигуна наведені на рисунку 9.2.

Рисунок 9.1 – Заступна схема для розрахунку пускових характеристик


Параметри з урахуванням витиснення струму для литої алюмінієвої обмотки (qрасч=1150С) /1, (6-235)/:



де hc – висота стрижня в пазу ротору:


j=0,25 /2, с. 216, рис. 6-46/


Глибина проникнення струму в стрижень /2, (6-236)/:



Коефіцієнти, враховуючі вплив ефекту витиснення струму на опори стрижнів, аналітично за /2, (6-230)/, чи практично за /2, (6-242)/ згідно до /2, рис. 6-48, в/та /2, рис. 6-46, 6-47/:


де:



Коефіцієнт загального збільшення опору фази ротора під впливом ефекту витиснення струму /2, (6-247)/:



Приведений активний опір ротора з урахуванням дії ефекту витиснення струму /2, (6-249)/:



Індуктивний опір обмотки ротора /1, табл. 6-23, рис. 6-40, а/:


Коефіцієнт зміни індуктивного опору фази обмотки ротора від дії ефекту витиснення струму /2, (6-251)/:



Струм ротора приблизно без урахування впливу насичення, приймаючи с1п=1 по /2, (6-269)/:



Урахування впливу насичення на параметри. Приймаємо для S=1 коефіцієнти насичення kнас=1,35 /2, с. 219/, приймаємо

Середня МРС обмотки, віднесена до одного паза обмотки статора /2, (6 252)/:



Реактивна індукція потоку розсіювання в повітряному зазорі:


Коефіцієнт характеризуючий відношення потоку розсіювання при насиченні до потоку розсіювання ненасиченої машини:

/2, с. 219, рис. 6-50/

Коефіцієнт магнітної провідності пазового розсіювання обмотки статора з урахуванням впливу насичення /2, (6 255)/:


/2, (6 258)/

/2, (6 261)/


Коефіцієнт магнітної провідності диференціального розсіювання обмотки статора з урахуванням впливу насичення /2, (6 263)/:



Індуктивний опір фази обмотки статора з урахуванням впливу насичення /2, (6 264)/:



де:



Коефіцієнт магнітної провідності пазового розсіювання ротора з урахуванням впливу насичення і витиснення струму /2, (6 260)/:


Провідність пазового розсіювання ротора /2, (6 262)/:



Коефіцієнт магнітної провідності диференціального розсіювання ротора з урахуванням впливу насичення /2, (6 263)/:



Приведений індуктивний опір фази обмотки ротора з урахуванням впливу витиснення і насичення струму /2, (6 265)/:



Опір взаємної індукції обмотки в пусковому режимі /2, (6 265)/:



Розрахунок струмів і моментів /2, (6 268)/:


по /2, (6 269)/


Отримане значення струму І1 складає 96,1% прийнятого при розрахунку впливу насичення на параметри, що припустимо. Похибка при інших значеннях ковзання також не перевищує припустимі 10-15%. /1, c. 223/

Відносні значення:



Отримані значення відносних величин лежать в межах ,що свідчить про допустиму величину пускових характеристик.


Кратність пускового моменту і пускового струму спроектованого двигуна задовольняють вимогам ГОСТ 19523-74.


Таблиця 9.1 – Вхідні дані розрахунку пускових характеристик

Параметр Значення Одиниця вимірювання Примітка
P2н 5500 Вт
U1н 220 В
I'2н 10,24 А
I1н 11,47 А
x12п 96,47 -
x1 1,667 Ом
x'2 2,359 Ом
sn 0,033 -
r1 0,89 Ом
r'2 0,697 Ом
b1 1,80 10-3 м
b2 5,80 10-3 м
h1 21,66 10-3 м Висота стрижня в пазу ротора
h1 17,00 10-3 м Висота по центрах кіл пазів ротора
hc 21,55 10-3 м
h'ш - 10-3 м
hш=hш2 0,75 10-3 м Розміри ротору [1, рис. 6-48, в]
bш=bш2 1,50 10-3 м
b 6,10 10-3 м
rc 62,99 10-6 Ом
r2 97,947 10-6 Ом
λп2 1,725 -
λл2 1,958 -
λд2 2,257 -
λп1 1,469 -
λл1 0,462 -
λд1 2,57 -
Z1 36 -
Z2 34 -
Kнас 1,3 -
uп1 25 -
a 1 -
1 -
kобм 0,96 -
δ 0,3 10-3 м
t1 11,00 10-3 м
t2 11,60 10-3 м
bш1 3 10-3 м Статор [1, рис. 6-51, в]
hш1 0,5 10-3 м
h' 1,5 10-3 м
1,35 -
x12 64,718 Ом

Таблиця 9.2 – Пускові характеристики

Розрахункова величина Одиниці вимір. Ковзання


1 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,15 0,1 0,033
ξ - 1,37 1,21 1,13 1,04 0,95 0,85 0,74 0,66 0,52 0,43 0,22
φ - 0,250 0,150 0,120 0,100 0,073 0,047 0,026 0,017 0,007 0,003 0,0002
hr мм 17,24 18,4 18,9 19,3 19,7 20,2 20,7 20,8 21,1 21,1 21,2
br мм 3,0 2,7 2,6 2,5 2,4 2,3 2,2 2,1 2,1 2,1 2,0
qc мм2 96,8
qr мм2 47,62 48,0 49,3 50,2 51,3 52,5 53,4 53,8 54,2 54,4 54,5
kr - 2,03 2,02 2,01 2,00 1,99 1,98 1,97 1,96 1,96 1,96 1,96
KR - 1,66 1,65 1,64 1,63 1,62 1,61 1,60 1,59 1,59 1,59 1,59
r'2ξ Ом 1,66 1,538 1,532 1,528 1,522 1,517 1,513 1,511 1,509 1,509 1,508
- 0,93 0,95 0,96 0,97 0,98 0,99 0,99 1,00 1,00 1,00 1,00
λп2ξ - 1,66 1,67 1,68 1,69 1,70 1,71 1,72 1,72 1,72 1,73 1,73
Kx - 0,99 0,991 0,992 0,993 0,994 0,995 0,996 0,997 0,997 0,997 0,997
x'2ξ Ом 2,335 2,339 2,343 2,346 2,349 2,351 2,353 2,355 2,356 2,356 2,356
I'2 А 48,93 47,7 47,4 46,8 46,1 44,9 43,0 41,0 35,4 29,2 10,4
kнас - 1,35 1,35 1,35 1,30 1,30 1,30 1,25 1,20 1,15 1,10 1,10
kнас∙I1 А 66,05 64,8 63,9 60,9 59,9 58,4 53,7 49,2 40,7 32,1 11,5
Fп.ср А 2330,8 2317 2297 2277 2239 2181 2098 1921 1588 1252 447
CN - 0,928 0,928 0,928 0,928 0,928 0,928 0,928 0,928 0,928 0,928 0,928
Bфδ Тл 5,23 5,13 5,09 5,01 4,94 4,80 4,60 3,37 3,03 2,39 0,85
χδ - 0,48 0,50 0,51 0,52 0,53 0,54 0,55 0,57 0,60 0,70 0,97
c1 мм 4,16 4,02 3,92 3,84 3,76 3,68 3,60 3,44 3,20 2,40 0,24
∆λп1нас - 0,21 0,21 0,21 0,21 0,21 0,21 0,20 0,20 0,19 0,16 0,02
λп1нас - 1,296 1,296 1,296 1,296 1,296 1,296 1,30 1,30 1,31 1,34 1,38
λд1нас - 1,234 1,237 1,23 1,27 1,34 1,38 1,44 1,50 1,57 1,65 1,74
x1нас - 1,108 1,11 1,11 1,125 1,14 1,155 1,175 1,229 1,304 1,455 1,880
c2 мм 5,252 5,24 5,24 5,05 4,92 4,80 4,67 4,42 4,04 3,78 0,38
∆λп2нас - 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,39 0,39 0,36 0,10
λп2ξнас - 1,327 1,264 1,277 1,291 1,303 1,314 1,323 1,330 1,339 1,368 1,626
λд2нас - 1,083 1,086 1,086 1,09 1,093 1,096 1,099 1,15 1,24 2,02 2,79
x'2ξнас Ом 1,735 1,751 1,755 1,766 1,777 1,788 1,798 1,808 1,815 1,991 2,268
c1пнас - 1,0115 1,0115 1,0115 1,012 1,012 1,012 1,013 1,013 1,013 1,016 1,022
aп - 2,063 2,183 2,278 2,457 2,628 2,884 3,316 3,650 4,660 6,419 21,514
bп - 2,863 3,013 3,016 3,043 3,069 3,095 3,121 3,169 3,241 3,481 4,201
I'2 А 48,93 47,3 46,4 44,9 43,0 40,4 36,5 32,7 28,8 21,1 10,0
I1 А 63,48 62,0 61,2 60,6 58,7 56,2 52,2 48,4 39,4 30,7 10,66
Iп* - 5,53 5,40 5,34 5,28 5,12 4,9 4,55 4,22 3,44 2,68 0,93
M* - 2,03 2,09 2,13 2,2 2,3 2,37 2,53 2,63 2,66 2,41 1,03
I1/I1нас % 99,14 97,81 97,24 99,65 98,09 96,14 97,18 98,32 96,78 95,68 93,02

Рисунок 9.2 – Пускові характеристики спроектованого двигуна


10. Тепловий розрахунок


Перевищення температури внутрішньої поверхні осереддя статора над температурою повітря усередині двигуна:


Де К – коефіцієнт враховуючу передачу частини енергії безпосередньо в навколишнє середовище, К=0,20 /2, стор. 237, табл. 6-30/ - електричні втрати в обмотках статора в пазовій частині:



- коефіцієнт збільшення втрат для обмоток класу нагрівостійкості

- коефіцієнт тепловіддачі з поверхні,



Перепад температури в ізоляції пазової частини обмоток статора:


де Пп1 – розрахунковий периметр поперечного переріза паза статора



- коефіцієнт теплопровідності внутрішньої ізоляції котушки всипної обмотки з емальованих провідників,


- середня еквівалентна теплопровідність пазової ізоляції,



Перепад температури по товщині ізоляції лобової частини:


де - електричні втрати в обмотках статора в лобовій частині котушок: