Проектирование электродвигателя асинхронного с короткозамкнутым ротором мощностью 37 кВт
/>,
Окончательно
;
;
.
Относительное значение
.
Индуктивное сопротивление фазы обмотки ротора:
, |
|
где по табл. 8.25 (см. рис. 8.52, а,ж)
, |
|
где (см. рис.8.52, а, ж и рис 8.76)
;
;
;
;
.
Тогда
Коэффициент магнитной проводимости лобового рассеяния в роторах с литыми обмотками при замыкающих кольцах, прилегающих к торцам сердечника ротора (см. рис. 8.37,б [1]) используем формулу:
. |
|
Имеем
.
В этих формулах – средний диаметр замыкающих колец; – коэффициент приведения токов в кольце к току в стержне; и – средние высота и ширина колец.
Коэффициент магнитной проводимости дифференциального рассеяния обмотки короткозамкнутого ротора:
, |
|
где
По кривым рис. 8.51, а [1, с.340] принимаем
Тогда
.
Окончательно
.
Приводим к числу витков обмотки статора:
. |
|
Тогда
Относительное значение
.
Сравнение параметров проектируемого АД, полученных в данном разделе, с теми же параметрами аналога:
Величина |
|
|
|
|
Проектируемый АД |
|
|
|
|
Аналог | 0,028 | 0,021 | 0,094 | 0,12 |
Расчет потерь
Потери в асинхронных машинах подразделяют на потери в стали (основные и добавочные), электрические, вентиляционные, механические о добавочные при нагрузке.
Основные потери в стали статоров асинхронных машин по формуле:
. |
|
где для стали 2212 – удельные потери при индукции 1 Тл и частоте перемагничивания 50 Гц;
– показатель степени, учитывающий зависимость потерь в стали от частоты перемагничивания;
и – коэффициенты, учитывающие влияние на потери в стали неравномерности распределения потока по сечениям участков магнитопровода и технологических факторов [1, с.348];
и – индукция в ярме и средняя индукция в зубцах статора, Тл;
и – масса стали ярма и зубцов статора, кг:
; |
|
; |
|
– высота ярма статора, м;
– расчетная высота зубца статора, м;
– удельная масса стали, в расчетах принимаем .
Тогда
;
;
Поверхностные потери в роторе:
. |
|
. |
|
В этих выражениях – коэффициент, учитывающий влияние обработки поверхности головок зубцов ротора на удельные потери.
Для определения поверхностных потерь вначале находят амплитуду пульсации индукции в воздушном зазоре над коронками зубцов статора и ротора, Тл:
. |
|
Для зубцов ротора – это отношение ширины шлица пазов статора к воздушному зазору:
. |
|
Для по рис.8.53 [1, c.349]
Окончательно для поверхностных потерь:
;
;
Пульсационные потери в зубцах ротора:
. |
|
Для определения пульсационных потерь вначале находиться амплитуда пульсаций индукций в среднем сечении зубцов для зубцов ротора, Тл:
. |
|
и были рассчитаны ранее.
В формуле : – масса стали зубцов ротора, кг:
. |
|
Тогда
;
;
.
Сумма добавочных потерь в стали:
. |
|
Тогда
Полные потери в стали:
. |
|
Тогда
.
Механические потери на трение в подшипниках и вентиляционные потери в двигателях с радиальной системой вентиляции без радиальных вентиляционных каналов, с короткозамкнутым ротором и вентиляционными лопатками на замыкающих кольцах, Вт:
, |
|
где при .
.
Ток холостого хода двигателя:
, |
|
где – реактивная составляющая тока холостого хода.
При определении активной составляющей холостого хода принимают, что потери на трение и вентиляцию и потери в стали при холостом ходе двигателя такие же, как и при номинальном режиме.
При этом условии:
. |
|
Электрические потери в статоре при холостом ходе приближенно принимают равными:
. |
|
Тогда
;
;
.
Коэффициент мощности при холостом ходе:
. |
|
Окончательно
.
Расчет рабочих характеристик
По (8.184) [1, с.347 ]:
|