Достижения генной инженерии и биотехнологии

Государственный университет управления

Институт  государственного и муниципального управления

Специальность государственное и муниципальное управление

Курсовая работа

на тему:

«Достижения генной инженерии и биотехнологии»

Выполнена студенткой

Дата выполнения работы 15.12.2000г.

Руководитель Миронченко В.И.

План
Введение Стр.2
Строение ДНК Стр.2
I Биотехнология Стр.4
Возникновение биотехнологии Стр.4
Специфика биотехнологии Стр.4
Разделы биотехнологии Стр.6
А) Биоэнергетика Стр.6
Б) Биологизация и экологизация Стр.6
Практические достижения биотехнологии Стр.7
II Генная инженерия Стр.7
Генная инженерия Стр.7
Методы генной инженерии Стр.8
Генетическая рекомбинация in vitro Стр.11
Методы введения ДНК в бактериальные клетки Стр.12
Достижения генной инженерии Стр.14
Молекулярная геномика Стр.17
Генная терапия Стр.19
Биотехнологические и генно-инженерные компании и их разработки. Стр.19
А) Компании США Стр.19
Б) Компании СССР Стр.23
В)  Компании Западной Европы Стр.23
Г) Международное сотрудничество Стр.24
Заключение Стр.26
Список терминов Стр.27
Список литературы Стр.28
Приложение 1 Стр.30
Приложение 2 Стр.31
Введение

В своей работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности, открываемые генетической инженерией перед че­ловечеством как в области фундаментальной науки, так и  во мно­гих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое произ­водство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации — энзимов и  аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека. Таким образом, генная инженерия, будучи  одним из магистральных направлений научно-технического прогресса, активно способствует ускорению решения многих задач, таких, как продовольственная, сель­скохозяйственная, энергетическая, экологическая.

Но особенно большие возможности генная инженерия открывает перед медици­ной и фармацевтикой, поскольку применение генной инженерии и гибридомных методов может привести к коренным преобразо­ваниям медицины. Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечно-сосудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инжене­рии и биотехнологии станут доступны и диагностике, и лечению. Под влиянием биотехнологии медицина может превратиться из преимущественно эмпирической в фундаментально теоретически обоснованную дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.

Строение ДНК

Еще в прошлом веке биологи изучили процесс клеточного деления, которому предшествует расхождение хромосом, благодаря чему в каждый сперматозоид и в каждую яйцеклетку попадает половина хромосом из исходной клетки. Тогда уже было показано, что носителями генетической информации являются хромосомы.

С точки зрения химиков хромосомы состоят из белка и дезоксирибонуклеиновой кислоты (ДНК). Белки — сложная группа веществ, состоящая из 20 мономерных звеньев (аминокислот), которые соеди­нены в самых разных комбинациях. В ДНК — всего четыре вида ами­нокислот. Сначала предположили, что ДНК строится сочетанием этих четырех единиц в однообразном порядке. В качестве носителей генетической информации предполагались белки, как более сложные структуры. Только в 40-с годы было установлено, что именно ДНК, несмотря на простоту своей структуры, являются носителями инфор­мации, и, более того, обеспечивают образование своих точных копий для передачи последующим поколениям.

Гены — это участки молекулы ДНК, которая "размножается" путем комплиментарного пристраивания друг к другу четырех нуклеотидов (оснований), и при ошибках в этом процессе происходят мутации. Гены управляют синтезом белков, составляю­щих протоплазму, переключаясь время от времени с построения собственных клеток на построение иных молекул. В клетках высших организмов количество ДНК сильно различает­ся, отсюда отличия между организмами и в наборе синтезируемых белков, и в сложности строения организмов.

В начале 50-х годов выяснилось, что химический состав ДНК (а не белков) у од­ного вида почти одинаков, весьма различаясь у разных видов. Любая ДНК состоит из четырех типов нуклеотидов: А, Т, Г, Ц (начальные буквы четырех азотистых оснований— аденин, тимин, гуанин и цитозин), которые присутствуют в ДНК в разных пропорциях у разных видов и имеют близкие пропорции у одного вида. В 1938 г. Уильям Астбери (автор термина молекулярная биология) получил вместе со своим сотрудником Флорином Беллом рентгено­граммы ДНК, которые показали, что азотистые основания распола­гаются одно за другим, построенные как пластинки. Вскоре амери­канский биохимик Эрвин Чаргафф (р. 1905) установил, что отно­шения А/Т и Г/Ц приблизительно равны единице. Эти результаты были важны для понимания структуры ДНК.

 Интерес к ДНК как носителю генетической информации резко возрос к началу 50-х го­дов, и структура ДНК была вскоре установлена. Химики понимали, что ДНК собрана из нуклеотидов, каждый из которых имеет фосфатную группу, связанную ковалентно с пяти-углеродным сахаром. Каждый такой сахар связан с одним из четырех азотистых оснований. История открытия структуры ДНК описана американским биохимиком Джеймсом Уотсоном (р.1928) в его книге «Двойная спираль»(1968). Кембридже Уотсон познакомился с Криком, физиком, который переквалифицировался в биохимика. Из общения с химиками Уотсон узнал, что структурные формулы, которыми они пользовались далеки от совершенства. Разобравшись в структуре пуринов (А, Г) и пиримидинов (Т, Ц), Уотсон и Крик решили, что они должны быть тесно связаны между собой. Если это так, то ДНК должна состоять из двух цепей. Цепи должны закручиваться между собой так, чтобы сохранялись определенные углы между группами атомов. Так возникла двойная спи­раль, в которой пурины и пиримидины выстроены по типу ступенек лестницы: роль "перекладин" играют основания, "веревок" — сахарофосфатные остовы. Каждая перекладинка образована из двух оснований, присоединенных к двум противоположным цепям, при­чем у одного из оснований одно кольцо, у другого — два. Следовательно, это может быть А и Т или Г и Ц. Поскольку в каждой паре есть одно ос­нование с одним кольцом и одно — с двумя, величина пе­рекладин одинаковая, и остовы цепей находятся на одном расстоянии. Две цепи удерживаются вместе водородными связями между основаниями. Статья Уотсона и Крика, в которой сообщалось о расшифровке структуры ДНК, заняла всего две странички в научном журнале, но она открыла новую эпоху в раскрытии тайны жизни. В первой же публикации (1953) Крик и Уотсон отметили, что такая структура хорошо объясняет и процесс "воспроизводства" этой молекулы. При рассоединении цепей возможно присоединение новых нуклеотидов к каждой из них, тогда около каждой старой возникнет новая цепь, точно ей соответствующая. Так впервые пришли к структуре, кото­рая была способна к самовоспроизведению. Физики Крик и Уилкинс вместе с биохимиком Уотсоном стали лауреатами Нобелевской пре­мии по физиологии и медицине за 1962 год.

Исследования показали, что ДНК может существовать в двух фор­мах: А (при низкой влажности) и В (при высокой). Для обеих форм построили молекулярные модели. Из дифракционных картин воло­кон ДНК информацию получить было достаточно трудно, посколь­ку цепи ДНК расположены вдоль оси волокна беспорядочно, но была подтверждена ее спиральная структура. К настоящему времени иссле­дователи научились синтезировать в необходимом количестве и по­лучать в достаточно чистом виде короткие участки ДНК заданной последовательности.

Строение рекомбинантной ДНК.

Гибридная ДНК имеет вид кольца. Она содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК, обеспечивающий размножение гибридной ДНК и синтез конечных продуктов деятельности генетической системы - белков. Большая часть векторов получена на основе фага лямбда, из плазмид, вирусов SV40, полиомы, дрожжей и др. бактерий. Синтез белков происходит в клетке-хозяине. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и др. бактерии, дрожжи, животные или растительные клетки. Система вектор-хозяин не может быть произвольной: вектор подгоняется к клетке-хозяину. Выбор вектора зависит от видовой специфичности и целей исследования. Ключевое значение в конструировании гибридной ДНК несут два фермента. Первый - рестриктаза - рассекает молекулу ДНК на фрагменты по строго определенным местам. И второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после выделения таких ферментов создание искусственных генетических структур стало технически выполнимой задачей.

Биотехнология Возникновение  биотехнологии

Современная биотехнология — это новое научно-техническое направление, возникшее в 60—70-х годах нашего столетия. Осо­бенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Несмотря на столь короткий срок своего существования, биотехнология прив­лекла пристальное внимание как ученых, так и широкой общест­венности. Биотехнология, в сущности, не что иное, как использо­вание культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических ве­ществ. Биотехнология на основе применения знаний и методов биохимии,  генетики и химической техники дала возможность получения с помощью легко доступных, возобновляемых ресурсов тех веществ и которые важны для жизни и благосостояния.

В промышленном масштабе подобная биотехнология  представляет собой уже биоиндустрию.

Одно из объяснений живого интереса к биотехнологии можно найти прежде всего в том, что именно к этому времени была осоз­нана действительная острота глобальных проблем, вставших перед человечеством: нехватка продовольствия, ограниченность энер­гии и минеральных ресурсов, резкое, почти катастрофическое, ухудшение окружающей среды и, как следствие, ухудшение здо­ровья человека. Стало понятно, что огромный индустриально-про­мышленный комплекс не только не помогает решить эти проблемы, но и еще более усугубляет их. Возникла настоятельная практическая потребность в принципиально новых технологиях и новых способах организации производства. В это же время физико-хими­ческая биология в союзе с генетикой, молекулярной биологией и микробиологией предложили новую технологию, как будто способ­ную помочь в решении этих проблем. Тем более что первые опыты биотехнологического производства дали неплохие результаты и потому позволили строить оптимистические планы на будущее.

Специфика  биотехнологии

Биотехнология - чрезвычайно наукоемкая технология. Так, например, возникшая первой в США фирма «Дженетек» расходует 76 % доходов на исследовательские разработки вместо обычных для других фирм 12 %. Среди общего числа работников НБФ около 35 % составляют доктора наук.[3]

Таким образом, новая биотехнология—это больше научно-техническое новаторское направление, чем производственное, хотя и с довольно большими производственными перспективами. Однако это такое научно-техническое направление, которое само выступает  производства, причем такого производства, которое уже не может сделать бук­вально ни одного шага без глубоких фундаментальных и система­тических прикладных научных разработок. Подчеркивая специфику новой технологии, т. е. отличая ее и от сельского хозяйства, и от традиционной промышленности, можно так определить биотехнологию: это технология промышленного применения и эксплуатации естественных и целенаправленно соз­данных живых систем, прежде всего микроорганизмов, в качестве автоматически действующих сил природы для удовлетворения.

Возникновение социальных проблем биотехнологии обуслов­лено прежде всего тем, что это новое производство есть одно из важнейших направлений научно-технического прогресса, качест­венно преобразующих содержание научно-технической революции. Есть все основания предполагать, что в недалеком будущем биотехнология превратится в одно из важнейших приоритетных направлений научно-технического прогресса и тем самым может привести к переосмыслению и самих критериев этого прогресса. Это предположение зиждется на том, что глобальные проблемы современности, и в особенности экологическую, продовольствен­ную и энергетическую, очень трудно (если не невозможно) будет решать без самого непосредственного и широкого применения биотехнологии. Важнейшие социальные проблемы возникают также и в связи с тем, что развитие биотехнологии ведет к размы­ванию традиционных границ между сельским хозяйством и про­мышленностью. Более того, возникающая в настоящее время необходимость сначала экологизации, а затем и в более широком смысле биологизации всей производственной и хозяйственной деятельности человечества может привести не только к пере­стройке и даже замене (сначала, конечно, частичной) привычного сельского хозяйства биотехнологией, но и к преобразованию промышленности и техники.[3]

Примечательно, что в сфере биотехнологии целый ряд биологических наук, и прежде всего микробиология, генетика и физико-химическая биология, уже превращаются в непосредственную производительную силу.

Слияние науки и производства, превращение науки в