Компонентный и факторный анализ

факторами, точнее их линейными комбинациями учтём с помощью так называемых характерных факторов.

Конечная цель статистического исследования, проводимого с привлече­нием аппарата факторного анализа, как правило, состоит в выявлении и интерпретации латентных общих факторов с одновременным стремлением ми­нимизировать как их число, так и степень зависимости от своих специфиче­ских остаточных случайных компонент .

Итак, в нашем распоряжении последовательность многомерных наблюде­ний Х.

Предполагаем, что каждый признак является результатом воздейст­вия m гипотетических общих и одного характерного факторов:

(1)

- весовые коэффициенты;

- общие факторы, которые подлежат определению;

- характерный фактор для i-ого исходного признака;

- весовой коэффициент при i-ом характерном факторе.

Представим выражение (1) в матричной форме.

Введём обозначения:

Сумма матриц даёт:

Представим матрицы индивидуальных значений общих и характерных фак­торов. Иногда для удобства их представляют в одной матрице:

Модель (1) можно записать в матричной форме:


3.1 Преобразование матрицы парных коэффициентов корреляции в редуцированную матрицу.


Запишем корреляционную матрицу:


Следующим шагом будет – построение редуцированной матрицы кор­реляции с общностями на главной диагонали. Общность показывает какую часть, какую долю составляет относительно дисперсии каждого из m общих факторов в дисперсии I - го исходного признака. Существуют следующие методы нахождения общности:

наибольшего элемента метод по строке

Суть метода заключается в том, что в строке матрицы , соответствующей данному признаку, выбирается элемент с наибольшим абсолютным значе­нием. Это наибольшее значение коэффициента корреляции записывается на главной диагонали.

h= 0,940 h=0,219 h=0,415 h=0,172 h=0,940

метод среднего коэффициента корреляции

h= 0,3977 h=0,1175 h=0,2627 h=0,10025 h=0,4117

с) метод триад

В j – ом столбце или строке отыскивают два наибольших значения ко­эффициентов корреляции и , тогда

h= 0,2314 h=0.0821 h=0,1717 h=0,0306 h=0,1956

d) метод первого центроидного фактора

h= 0,6562 h=0,8181 h=0,9407 h=0,2054 h=0,4315


Запишем матрицу , используя метод среднего коэффициента корреляции:

h= 0,3977 h=0,1175 h=0,2627 h=0,10025 h=0,4117

Построим матрицу Rh – редуцированную корреляционная матрица.


Для получения первого вектора коэффициентов первого главного фактора необходимо найти наибольшее собственное число матрицы и по нему построить соответствующий собственный вектор, затем нормировать его и умножить все компоненты этого вектора на ( для того, чтобы длина этого вектора была ), тогда получим искомый вектор .Затем необходимо найти матрицу рассеивания , обусловленную влиянием первого общего фактора, и матрицу остатков, которая содержит в себе связи, обусловленные влиянием всех общих факторов, начиная со второго. Далее переходим по той же схеме к поиску собственных чисел матрицы . Но, оказывается, что собственные числа и собственные вектора матриц и совпадают, начиная со второго, а это означает, что достаточно найти собственные числа матрицы , ранжировать их и найти собственные вектора.

Получим следующие собственные числа:

1=1.658 2=0.21 3=0.069 4=-0.105 =-0.542

Процесс выделения главных факторов прекращают как только сумма собственных чисел соответствующих выделенным главным факторам превысят след матрицы Rh. В нашем случае при выделении первых трех главных факторов , а То есть в нашем случае выделения трех главных факторов достаточно для объяснения корреляционных связей между признаками.


Положительное, максимальное собственное число 1=1,568, построим собственный вектор соответствующий данному

собственному числу: =, - ненормированный вектор полученный из =0

Найдем: , 1=.

Рассмотрим второе положительное максимальное собственное число и третье, а также соответственные собственные собственные вектора 2=, для 2=0,21

3=, для =0,069

Матрица факторного отображения:


Произведем экономическую интерпретацию полученных общих факторов на основании матрицы факторных нагрузок А.

Первый главный фактор имеет тесную взаимосвязь с первым (X5 – удельный вес рабочих в составе ППП) и третьего (X7 – коэффициент сменности оборудования) исходного признака, следовательно его можно обозначить как «Эффективность основного производства». Второй общий фактор наиболее тесную взаимосвязь имеет со вторым исходным признаком, обозначим его как «Удельный вес покупных изделий». Третий главный фактор имеет очень низкую взаимосвязь со всеми исходными признаками


3.2 Графическая классификация предприятий по двум общим факторам


Чтобы графически произвести классификацию объектов, необходимо найти наблюденные значения первых двух общих факторов. Это можно сделать по формуле: , где

- транспонированная матрица факторных нагрузок;

- диагональная матрица, на главной диагонали которой стоят харак терности соответствующих общих факторов;

- матрица центрированно-нормированных значений исходных признаков.

Матрица наблюденных значений общих факторов приведена в Приложениях.

Отобразим объекты наблюдения в пространстве первых двух общих факторов.

3.3 Переход к обобщенным факторам с помощью варимаксного вращения


В факторном анализе при решении практических задач широко применяется ортогональное вращение. Конечной целью факторного анализа является получение содержательно интерпретируемых факторов, которые воспроизводили бы выборочную корреляционную матрицу между переменными. Например, в методе главных факторов это достигается путем вращения.

Поскольку из множества положений системы координат надо выбрать одну, нужен критерий, который давал бы возможность судить о том, что мы близко подошли к своей цели. Таких критериев предложено много. Остановимся на наиболее часто используемом методе варимаксного вращения. Метод Варимакс рассчитывает Vj критерий качества структуры каждого фактора:

При помощи метода «варимакс» достигают максимального упрощения в описании столбцов матрицы факторного отображения. Возможно раздельноеулучшение структуры факторов. Наилучшим будет максимальное значение критерия. Если после очередного вращения Vj растет – переходим к вращению. Рассчитаем Vj для имеющейся матрицы А:V1=0.307, V2=0.168

Рис.3: Классификация признаков.


Наша цель не только снизить размерность признакового пространства, но и предать выделенным факторам какой-то экономический смысл. Мы можем перейти с помощью вращения от факторов f1 и f2 к факторам f1 и f2 с помощью соотношения В=Т*А. Исходя из геометрических соображений, повернем систему координат по часовой стрелки на угол равный 15. Матрица вращения будет иметь вид:


Т=

Известно, что sin15=0.259 cos15=0.966. Найдем матрицу В=Т*А

*=

Рассчитаем Vj для матрицы В , полученной после вращения: V1=0,240, Vj=0,156. Значение Vj не возросло ни по одному из факторов.

Попытки производить вращения на другие углы не приводят к возрастанию значения Vj следовательно нет необходимости во вращении.


3.4 Построение функции регрессии на выделенные обобщенные факторы


Используя данные о «наблюденных» значениях общих факторов, построим функцию регрессии на выделенные обобщенные факторы с помощью программы «Stadia».Получим уравнение регрессии следующего вида для i-го объекта наблюдения:


Подробное описание уравнения регрессии дано в Приложениях


Список использованных источников

1 Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы: Учебник. – М.: Финансы и статистика,1998.- 352с.

2 Сошникова Л.А., Тамашевич В.Н., Уебе Г., Шефер М. Многомерный статистический анализ в экономике: Учебное пособие для вузов- М.:ЮНИТИ-ДАНА, 1999.-598 с.

Приложение 1

Наблюденные значения исходных признаков

Y1

X5

X6

X7

X9

X17







9,26

0,78

0,4

1,37

0,23

17,72

9,38

0,75

0,26

1,49

0,39

18,39

12,11

0,68

0,4

1,44

0,43

26,46

10,81

0,7

0,5

1,42

0,18

22,37

9,35

0,62

0,4

1,35

0,15

28,13

9,87

0,76

0,19

1,39

0,34

17,55

9,17

0,73

0,25

1,16

0,38

21,92

9,12

0,71

0,44

1,27

0,09

19,52

5,88

0,69

0,17

1,16

0,14

23,99

6,3

0,73

0,39

1,25

0,21

21,76

6,22

0,68

0,33

1,13

0,42

25,68

5,49

0,74

0,25

1,1

0,05

18,13

6,5

0,66

0,32

1,15

0,29

25,74

6,61

0,72

0,02

1,23

0,48

21,21

4,32

0,68

0,06

1,39

0,41

22,97

7,37

0,77

0,15

1,38

0,62

16,38

7,02

0,78

0,08

1,35

0,56

13,21

8,25

0,78

0,2

1,42

1,76

14,48

8,15

0,81

0,2

1,37

1,31

13,38

8,72

0,79

0,3

1,41

0,45

13,69

6,64

0,77

0,24

1,35

0,5

16,66

8,1

0,78

0,1

1,48

0,77

15,06

5,52

0,72

0,11

1,24

1,2

20,09

9,37

0,79

0,47

1,4

0,21

15,98

13,17

0,77

0,53

1,45

0,25

18,27

6,67

0,8

0,34

1,4

0,15

14,42

5,68

0,71

0,2

1,28

0,66

22,76

5,22

0,79

0,24

1,33

0,74

15,41

10,02

0,76

0,54

1,22

0,32

19,35

8,16

0,78

0,4

1,28

0,89

16,83

3,78

0,62

0,2

1,47

0,23

30,53

6,48

0,75

0,64

1,27

0,32

17,98

10,44

0,71

0,42

1,51

0,54

22,09

7,65

0,74

0,27

1,46

0,75

18,29

8,77

0,65

0,37

1,27

0,16

26,05

7

0,66

0,38

1,43

0,24

26,2

11,06

0,84

0,35

1,5

0,59

17,26

9,02

0,74

0,42

1,35

0,56

18,83

13,28

0,75

0,32

1,41

0,63

19,7

9,27

0,75

0,33

1,47

1,1

16,87

6,7

0,79

0,29

1,35

0,39

14,63

6,69

0,72

0,3

1,4

0,73

22,17

9,42

0,7

0,56

1,2

0,28

22,62

7,24

0,66

0,42

1,15

0,1

26,44

5,39

0,69

0,26

1,09

0,68

22,26

5,61

0,71

0,16

1,26

0,87

19,13

5,59

0,73

0,45

1,36

0,49

18,28

6,57

0,65

0,31

1,15

0,16

28,23

6,54

0,82

0,08

1,87

0,85

12,39

4,23

0,8

0,68

1,17

0,13

11,64

5,22

0,83

0,03

1,61

0,49

8,62

18

0,7

0,02

1,34

0,09

20,1

11,03

0,74

0,22

1,22

0,79

19,41


f1

f2

f3

1

0.465

0.513

-0.722

2

0.521

-0.576

-0.18

3

-0.918

-0.263

-0.119

4

-0.53

0.434

-0.672

5

-1.703

-0.315

0.16

6

0.527

-0.593

0.05

7

-0.574

0.059

0.243

8

-0.455

0.651

-0.508

9

-1.005

-0.546

0.676

10

-0.495

0.48

-0.315

11

-1.401

0.233

0.292

12

-0.293

0.333

0.082

13

-1.516

0.049

0.366

14

-0.277

-1.222

0.996

15

-0.456

-1.647

0.942

16

0.722

-0.662

0.164

17

1.067

-0.793

0.279

18

1.029

-0.334

0.062

19

1.246

-0.106

-0.118

20

1.05

0.109

-0.534

21

0.569

-0.175

-0.127

22

1.149

-1.072

0.215

23

-0.212

-0.722

0.771

24

0.698

0.853

-1.066

25

0.399

0.874

-1.153

26

1.007

0.311

-0.723

27

-0.523

-0.562

0.473

28

0.797

6.03E-3

-0.184

29

-0.225

1.458

-0.957

30

0.382

0.833

-0.584

31

-1.525

-1.642

0.833

32

-0.161

1.809

-1.328

33

-0.185

-0.104

-0.45

34

0.395

-0.45

-0.103

35

-1.426

-0.081

0.145

36

-1.057

-0.412

-0.012

37

1.263

0.194

-0.811

38

0.016

0.516

-0.546

39

0.211

-0.1

-0.251

40

0.576

-0.082

-0.332

41

1.703

3.644

5.731

42

-0.235

-0.339

0.019

43

-1.023

1.293

-0.705

44

-1.656

0.487

0.022

45

-1.047

0.164

0.457

46

-0.211

-0.573

0.546

47

-0.017

0.608

-0.645

48

-1.804

-0.119

0.487

49

2.464

-1.953

-0.182

50

0.543

2.607

-1.793

51

2.391

-1.4

-0.05

52

-0.127

-1.581

0.901

53

-0.131

-0.094

0.26

Приложение 2

Главные

компоненты


Приложение 3

Построение уравнения регрессии на главные компоненты.

ПОШАГОВАЯ РЕГРЕССИЯ. Файл: гл.комп.std

Пропущн=2 2


Переменная Среднее Ст.отклон.

f1 3,77E-5 1

f2 5,66E-7 1

f3 3,77E-5 1

Y 7,97 2,61


Корреляционная матрица

f1 f2 f3 Y

f2 0

f3 -0,001 0

Y 0,044 0,009 -0,167


Критичeское значение=0,57

Число значимых коэффициентов=0 (0%)


*** Метод включения. Шаг No.1, введена переменная:f3


Коэфф. a0 a1

Значение 7,97 -0,437

Ст.ошиб. 0,357 0,36

Значим. 0 0,229


Источник Сум.квадр. Степ.св Средн.квадр.

Регресс. 9,92 1 9,92

Остаточн 344 51 6,75

Вся 354 52


Множеств R R^2 R^2прив Ст.ошиб. F Значим

0,16732 0,0279970,0089386 2,5985 1,47 0,144

Гипотеза 0: <Регрессионная модель неадекватна экспериментальным данным>


Измен.R^2 F Значим

0,028 1,47 0,229


-------------- Переменные в уравнении ---------------

Переменн. Коэфф.В Ст.ош.В Бета F Значим

f3 -0,437 0,36 -0,167 1,47 0,229


------------------ Переменные не в уравнении ---------------------------

Переменн. Коэфф.В Ст.ош.В Бета F Значим Частн.R Толер.

f2 0,0241 0,364 0,00922 0,00438 0,946 0,00935 1

f1 0,116 0,364 0,0446 0,102 0,749 0,0452 1


Приложение 4

«Наблюденные» значения общих факторов.

f1

f2

f3

1

0.745

янв.23

1.313

2

0.734

-0.836

0.704

3

-0.238

0.527

0.758

4

0.318

1.969

1.578

5

-1.211

0.409

0.318

6

0.232

-1.468

0.097

7

-1.22

-0.515

-0.57

8

-0.25

1.614

0.959

9

-1.849

-1.743

-1.129

10

-0.476

01.апр

0.564

11

-1.789

0.264

-0.56

12

-1.179

-0.298

-0.439

13

-1.87

0.016

-0.572

14

-1.44

-3.51

-1.681

15

-1.009

-3.509

-1.145

16

0.266

-1.837

-0.201

17

0.259

-2.529

-0.505

18

0.857

-1.027

-0.204

19

0.878

-0.868

-6.854E-3

20

1.076

0.101

0.966

21

0.307

-0.685

0.247

22

0.791

-2.553

-0.15

23

-1.051

-2.264

-1.434

24

1.241

2.131

1.901

25

1.312

2.653

2.214

26

1.117

0.583

1.302

27

-0.957

-1.415

-0.703

28

0.459

-0.507

0.197

29

0.122

3.157

1.449

30

0.437

1.527

0.772

31

-1.286

-2.376

-0.534

32

0.618

апр.32

2.167

33

0.666

0.896

1.303

34

0.582

-0.631

0.472

35

-1.295

0.351

0.086

36

-0.463

0.212

0.634

37

1.705

0.623

1.523

38

0.366

1.402

1.025

39

0.423

0.057

0.635

40

0.965

0.228

0.766

41

3.449

май.79

-16.471

42

-0.049

-0.334

0.249

43

-0.578

мар.14

1.174

44

-1.702

1.212

0.04

45

-1.802

-0.354

-1.028

46

-0.864

-1.729

-0.953

47

0.449

1.732

1.235

48

-2.152

-0.24

-0.695

49

3.036

-3.314

1.159

50

1.037

5.343

2.573

51

2.026

-3.347

0.406

52

-1.012

-3.805

-1.202

53

-0.731

-0.83

-0.606


Приложение 5

Уравнение регрессии на общие факторы.

МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ.


Коэфф. a0 a1 a2 a3

Значение 7,97 0,309 0,0722 0,186

Ст.ошиб. 0,359 0,309 0,177 0,145

Значим.