Структурная надежность систем
систем" width="18" height="21" /> - процентной наработки не менее, чем в 1.5 раза за счет:а) повышения надежности элементов;
б) структурного резервирования элементов системы.
Все элементы системы работают в режиме нормальной эксплуатации (простейший поток отказов). Резервирование отдельных элементов или групп элементов осуществляется идентичными по надежности резервными элементами или группами элементов. Переключатели при резервировании считаются идеальными.
На схемах обведенные пунктиром m элементов являются функционально необходимыми из n параллельных ветвей.
7. ПРИМЕР РАСЧЕТА НАДЕЖНОСТИ
Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в 1/ч.
1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что , получим
. (7.1)
2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что , получим
. (7.2)
3. Элементы 6 и 7 в исходной схеме соединены последовательно. Заменяем их элементом С, для которого при
. (7.3)
4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при , получим
. (7.4)
5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е , причем, так как , то
(7.5)
6. Элементы 12 , 13 , 14 и 15 образуют соединение “2 из 4”, которое заменяем элементом F. Так как, то для определения вероятности безотказной работы элемента F можно воспользоваться комбинаторным методом (см. раздел 3.3):
(7.6)
7. Преобразованная схема изображена на рис. 7.2.
8. Элементы A, B, C, D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С. Тогда
(7.7)
где - вероятность безотказной работы мостиковой схемы при абсолютно надежном элементе С (рис. 7.3, а), - вероятность безотказной работы мостиковой схемы при отказавшем элементе С (рис. 7.3, б).
Учитывая, что , получим
(7.8)
9. После преобразований схема изображена на рис. 7.4.
10. В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы
(7.9)
11. Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону:
(7.10)
12. Результаты расчетов вероятностей безотказной работы элементов 1 - 15 исходной схемы по формуле (7.10) для наработки до часов представлены в таблице 7.1.
13. Результаты расчетов вероятностей безотказной работы квазиэле-ментов A, B, C, D, E, F и G по формулам (7.1) - (7.6) и (7.8) также представлены в таблице 7.1.
14. На рис. 7.5 представлен график зависимости вероятности безотказной работы системы P от времени (наработки) t.
15. По графику (рис. 7.5, кривая P) находим для - процентную наработку системы ч.
16. Проверочный расчет при ч показывает (таблица 7.1), что .
17. По условиям задания повышенная - процентная наработка сис-темы ч.
Таблица 7.1
Расчет вероятности безотказной работы системы
Элемент |
l i, |
Наработка t, x 106 ч |
|||||||
x10-6 ч-1 |
0,5 |
1,0 |
1,5 |
2,0 |
2,5 |
3,0 |
1,9 |
2,85 |
|
1 |
0,001 |
0,9995 |
0,9990 |
0,9985 |
0,9980 |
0,9975 |
0,9970 |
0,9981 |
0,9972 |
2 - 5 |
0,1 |
0,9512 |
0,9048 |
0,8607 |
0,8187 |
0,7788 |
0,7408 |
0,8270 |
0,7520 |
6,7 |
0,01 |
0,9950 |
0,9900 |
0,9851 |
0,9802 |
0,9753 |
0,9704 |
0,9812 |
0,9719 |
8 - 11 |
0,2 |
0,9048 |
0,8187 |
0,7408 |
0,6703 |
0,6065 |
0,5488 |
0,6839 |
0,5655 |
12 - 15 |
0,5 |
0,7788 |
0,6065 |
0,4724 |
0,3679 |
0,2865 |
0,2231 |
0,3867 |
0,2405 |
A, B |
- |
0,9976 |
0,9909 |
0,9806 |
0,9671 |
0,9511 |
0,9328 |
0,9701 |
0,9385 |
C |
- |
0,9900 |
0,9801 |
0,9704 |
0,9608 |
0,9512 |
0,9417 |
0,9628 |
0,9446 |
D, E |
- |
0,9909 |
0,9671 |
0,9328 |
0,8913 |
0,8452 |
0,7964 |
0,9001 |
0,8112 |
F |
- |
0,9639 |
0,8282 |
0,6450 |
0,4687 |
0,3245 |
0,2172 |
0,5017 |
0,2458 |
G |
- |
0,9924 |
0,9888 |
0,9863 |
0,9820 |
0,9732 |
0,9583 |
0,9832 |
0,9594 |
P |
- |
0,9561 |
0,8181 |
0,6352 |
0,4593 |
0,3150 |
0,2075 |
0,4923 |
0,2352 |
12` - 15` |
0,322 |
0,8513 |
0,7143 |
0,6169 |
0,5252 |
0,4471 |
0,3806 |
0,5424 |
0,3994 |
F` |
- |
0,9883 |
0,9270 |
0,8397 |
0,7243 |
0,6043 |
0,4910 |
0,7483 |
0,5238 |
P` |
- |
0,9803 |
0,9157 |
0,8270 |
0,7098 |
0,5866 |
0,4691 |
0,7343 |
0,5011 |
16 - 18 |
0,5 |
0,7788 |
0,6065 |
0,4724 |
0,3679 |
0,2865 |
0,2231 |
0,3867 |
0,2405 |
F`` |
- |
0,9993 |
0,9828 |
0,9173 |
0,7954 |
0,6413 |
0,4858 |
0,8233 |
0,5311 |
P`` |
- |
0,9912 |
0,9708 |
0,9034 |
0,7795 |
0,6226 |
0,4641 |
0,8079 |
0,5081 |
Рис 7.5. Изменение вероятности безотказной работы исходной системы (Р), системы с повышенной надежностью (Р`) и системы со структурным резервированием элементов (Р``).
18. Расчет показывает (таблица 7.1), что при ч для элементов преобразованной схемы (рис. 7.4) , и . Следовательно, из трех последовательно соединенных элементов минимальное значение вероятности безотказной работы имеет элемент F (система “2 из 4” в исходной схеме (рис. 7.1)) и именно увеличение его надежности даст максимальное увеличение надежности системы в целом .
19. Для того, чтобы при ч система в целом имела вероятность безотказной работы , необходимо, чтобы элемент F имел вероятность безотказной работы (см. формулу (7.9))
(7.11)
При этом значении элемент F останется самым ненадежным в схеме (рис. 7.4) и рассуждения в п.18 останутся верными.
Очевидно, значение , полученное по формуле (7.11), является мини-мальным для выполнения условия увеличения наработки не менее, чем в 1.5 раза, при более высоких значениях увеличение надежности системы будет большим.
20. Для определения минимально необходимой вероятности безотказной работы элементов 12 - 15 (рис. 7.1) необходимо решить уравнение (7.6) относительно при . Однако, т.к. аналитическое выражение этого уравнения связано с определенными трудностями , более целесообразно использовать графо-аналитический метод. Для этого по данным табл. 7.1 строим график зависимости . График представлен на рис. 7.6.
Рис. 7.6. Зависимость вероятности безотказной работы системы “2 из 4” от вероятности безотказной работы ее элементов.
21. По графику при находим .
22. Так как по условиям задания все элементы работают в периоде нормальной эксплуатации и подчиняются экспоненциальному закону (7.10), то для элементов 12 - 15 при находим
ч. (7.12)
23. Таким образом, для увеличения - процентной наработки ситемы необходимо увеличить надежность элементов 12, 13, 14 и 15 и снизить интенсивность их отказов с до ч, т.е. в 1.55 раза.
24. Результаты расчетов для системы с увеличенной надежностью элементов 12, 13, 14 и 15 приведены в таблице 7.1. Там же приведены расчетные значения вероятности безотказной работы системы “2 из 4” F` и системы в целом P`. При ч вероятность безотказной работы системы , что соответствует условиям задания. График приведен на рис 7.5.
25. Для второго способа увеличения вероятности безотказной работы системы - структурного резервирования - по тем же соображениям (см. п. 18) также выбираем элемент F, вероятность безотказной работы которого после резервирования должна быть не ниже (см. формулу ( 7.11 )).
26. Для элемента F - системы “2 из 4” - резервирование означает увеличение общего числа элементов. Аналитически определить минимально необходимое количество элементов невозможно, т.к. число элементов должно быть целым и функция дискретна.
27. Для повышения надежности системы “2 из 4” добавляем к ней элементы, идентичные по надежности исходным элементам 12 - 15, до тех пор, пока вероятность безотказной работы квазиэлемента F не достигнет заданного значения.
Для расчета воспользуемся комбинаторным методом (см. раздел 3.3) :
- добавляем элемент 16, получаем систему “2 из 5”:
(7.13)
(7.14)
- добавляем элемент 17, получаем систему “2 из 6”:
(7.15)
(7.16)
- добавляем элемент 18, получаем систему “2 из 7”:
(7.17)
(7.18)
28. Таким образом, для повышения надежности до требуемого уровня необходимо в исходной схеме (рис. 7.1) систему “2 из 4” достроить элементами 16, 17 и 18 до системы “2 из 7” (рис. 7.7).
29. Результаты расчетов вероятностей безотказной работы системы “2 из 7” F`` и системы в целом P`` представлены в таблице 7.1.
30. Расчеты показывают, что при ч , что соот-ветствует условию задания.
31. На рис. 7.5 нанесены кривые зависимостей вероятности безотказной работы системы после повышения надежности элементов 12 - 15 (кривая ) и после структурного резервирования (кривая ).
Выводы:
1. На рис. 7.5 представлена зависимость вероятности безотказной работы системы (кривая ). Из графика видно, что 50% - наработка исходной системы составляет часов.
2. Для повышения надежности и увеличения 50% - наработки системы в 1.5 раза (до часов) предложены два способа:
а) повышение надежности элементов 12, 13, 14 и 15 и уменьшение их отказов с до ч;
б) нагруженное резервирование основных элементов 12, 13, 14 и 15 идентичными по надежности резервными элементами 16, 17 и 18 (рис. 7.7).
3. Анализ зависимостей вероятности безотказной работы системы от времени (наработки) (рис. 7.5) показывает, что второй способ повышения надежности системы (структурное резервирование) предпочтительнее первого, так как в период наработки до часов вероятность безотказной работы системы при структурном резервировании (кривая ) выше, чем при увеличе-нии надежности элементов (кривая ).
Таблица 6.1
Численные значения параметров к заданию