Электротехника и основы электроники

приведены временные диаграммы, поясняющие процесс записи информации в регистр. В качестве примера взят код 1011, соответствующий числу 11. Перед записью информации регистр устанавливают в состояние ''0''. Для этого в отсутствие сигнала на входе подается серия тактовых импульсов с числом импульсов, равным количеству разрядов в регистре. При записи информации одновременно с поступлением кода числа подаются тактовые импульсы. Тактовыми импульсами осуществляется продвижение информа-ции от младшего разряда регистра к старшему. В результате после четверто-го тактового импульса ячейки регистра принимают состояния, соответ-ствующие коду принятого четырехразрядного числа.

Операция считывания информации из последовательного регистра может быть проведена в параллельном или последовательном коде. Для передачи информации в параллельном коде используют выходы разрядов регистра. Таким образом, последовательный регистр позволяет осуществить операцию преобразования последовательного кода в параллельный. Считывание информации в последовательном коде реализуется подачей серии тактовых импульсов.

В последовательном регистре записанное число может быть сдвинуто тактовыми импульсами на один или несколько (К) разрядов. Операции сдви-га соответствует умножение числа на 2 . Например, сдвиг кода 0010 (число 2) на один разряд дает код 0100 (число 4), на два разряда – код 1000 (8).

Регистры, выпускаемые промышленностью в виде отдельных микро-схем, имеют условное обозначение в электронных схемах в виде прямоугольника рис. 23.


Буквы RG на рисунке означают регистр;

на входы D1 – Dn подается код числа для

записи, C3 – вход команды записи; CЧ1,

СЧ2 – входы для команды считывания;

R – установка регистра в нулевое поло-

жение; Q1, Qn – выходы.


Рис. 23


МИКРОПРОЦЕССОРЫ


Микропроцессором (МП) называют программно управляемое микро-электронное устройство, осуществляющее обработку цифровой информации. Микропроцессор содержит одну или несколько больших интегральных схем. В случае использования нескольких больших интегральных схем они должны быть совместимы, т.е. предназначены для совместного применения с общими источниками питания, иметь единую систему логических сигналов, одинаковую разрядность и быстродействие.

Микропроцессор реализует такие функции, как выборку в предписан-ной программной последовательности, декодирование и управление выпол-нением команд, а также выполнение операций тестирования и преобразова-ния данных. Таким образом, он осуществляет заданную в виде программы последовательность действий – процесс, откуда и название – процессор.

МП оперирует информацией в двоичной системе счисления. Каждый разряд двоичного числа называется битом. Информация, которую обраба-тывает микропроцессор, представляется группой битов, которые составляют слово. Количество битов в слове зависит от типа МП и может быть 4, 8, 12, 16 и т.д. Количество битов в слове, предназначенное для передачи данных, равно числу проводников и образует так называемую шину данных.

Группа, состоящая их восьми битов называется байтом. Деление слова на байты позволяет упростить представление двоичного кода, применив шестнадцатиричную форму записи. Представление двоичного слова в шестнадцатиричном коде позволяет уменьшить вероятность появле-ния ошибок при составлении программы работы микропроцессора.

МП представляет собой СБИС – тонкую пластину кристаллического кремния в форме прямоугольника со сторонами размером от 3 до 7 мм. Пластина монтируется в пластмассовый или металлический корпус шириной 10 – 15 мм и длиной 20 – 70 мм. Вдоль длинных сторон корпуса распола-гаются выводы в количестве 16 – 60 для соединения МП с другими устройст-вами. Первый МП появился в 1971 году, содержал 2250 транзисторов из четырех кристаллов, с кристаллом ОЗУ емкостью 32 бита. Уже в 1974 г. был разработан МП К580, содержащий 5 тыс. транзисторов с памятью 64 Кбайта (1 Кбайт =1024 =2 ), а в 1984 г. был разработан МП типа К1810, содержащий 29 тыс. транзисторов с памятью в 1 Мбайт (2І°).

Применение микропроцессорных модулей: 80% МП – это встраи-ваемые устройства в различные автоматизированные системы управления и 20% - используются для построения ЭВМ. По прогнозам к 2000 г. число выпускаемых МП превысит число электрических ламп и составит 5 – 10 млрд. штук.

Упрощенная структурная схема микропроцессора серии К580 МК 80 А представлена на рис. 24.


Рис. 24


МП состоит из схем, реализующих арифметические и логические операции над данными различных регистров, служащих для временного хранения и преобразования данных и команд, а также устройств управления и связи с внешними блоками.

МП применяют совместно с запоминающим устройством программы (ЗУП), с запоминающим устройством данных (ЗУД), а также с устройством ввода-вывода (УВВ).

Система, состоящая из микропроцессора и указанных устройств, получила название микропроцессорной системы, или микроЭВМ (рис. 25).


Рис. 25

Функционирование всех узлов и блоков микропроцессорной системы осуществляется с помощью генератора тактовых импульсов.

Регистр команд PpК предназначен для хранения в МП команды, считанной из ЗУП, на период ее выполнения. Выполнение команды осуществляется блоком управления БУ, который связан с общими регистрами МП.

Аккумулятор АК представляет собой основной регистр, предназначенный для ввода данных в МП и вывода их из него. В аккумулятор поступает операнд (числа) из ЗУД перед проведением соответствующей операции в арифметико-логическом устройстве. В аккумулятор же вводится результат проведенной в АЛУ операции.

Арифметическо-логическое устройство АЛУ осуществляет операции сложения, вычитания, сравнения, а также операции И, ИЛИ над двумя числами (операндами) с выдачей результата по одному выходу. Вид операции задается командным кодом, содержащимся в регистре команд.

Регистр временного хранения РрВXр предназначен для хранения данных перед проведением операций в АЛУ. Если, например, требуется провести операцию арифметического сложения двух чисел, то одно число предварительно хранится в аккумуляторе, а второе – в одном из регистров временного хранения.

Счетчик команд СК содержит адрес команды выбираемой PpК из ЗУП в текущий момент времени. Он представляет собой суммирующий счетчик, содержание которого увеличивается на единицу к концу выполнения текущей команды.

Если МП работает с подпрограммами, то в СК записывается предварительное число, соответствующее адресу первой команды подпрограммы, а по завершении последней команды в подпрограмме счетчик устанавливается на адрес команды основной программы.

SP – стековый регистр – производит операции записи и извлечения чисел. Содержимое SP автоматически уменьшается на 2 после каждой записи и увеличивается на 2 после каждого извлечения. Необходимость работы стекового регистра возникает при обращении к подпрограммам для записи адреса возврата из подпрограммы.

Рр Пр – регистр признаков. В разрядах Рр Пр записывается информация в двоичном коде о разрядах переноса, знака, признаках четности и нуля.


СПИСОК ЛИТЕРАТУРЫ


1. Забродин Ю.С. Промышленная электроника. - М.: Высш. шк., 1982.- 496с.

2. Основы промышленной электроники: Учеб. для неэлектротехничес- ких спец. вузов / В.Г. Герасимов, О.М. Князьков, А.Е. Краснопольский, В.В. Сухоруков; Под ред. В.Г. Герасимова. - М.: Высш. шк.,- 1986. - 336 с.

3. Электротехнический справочник: В 3тт. Т.2. Электротехнические изделия и устройства.- М.: Энергоатомиздат, 1986.- 712 с.

4. Основы радиоэлектроники: Учеб. пособие / Ю.П. Волощенко, Ю.Ю. Мартюшев, И.Н. Никитина и др.; Под ред. Г.Д. Петрухина.- М.: Изд-во МАИ, 1993.- 416 с.

5. Барков В.А. Электроника робототехнических систем. Усилительно-преобразовательные устройства.: Учеб. пособие.- СПб.: СПбГТУ, 1993.- 144 с.

6. Хоровиц П., Хилл У. Искуство схемотехники: В 3 тт.: Пер. с англ.- М.: Мир, 1993. Т.1. 598 с.

7. Фишер Дж., Гетланд Х.Б. Электроника – от теории к практике: Пер. с англ.- М.: Энергия, 1980.- 400 с.

8. Цифровые и аналоговые микросхемы: Справочник / С.В. Якубовский, Л.И. Ниссельсон, В.И. Кулешова и др.- М.: Радио и связь, 1990.- 496 с.

9. Алексеенко А.Г. Основы микросхемотехники. Элементы морфологии микроэлектронной аппаратуры. Изд. 2-е перераб. и доп.- М.: Сов. радио, 1977.- 405 с.

10. Алексеенко А.Г. Современная микросхемотехника.- М.: Энергия.- 1979.- 112 с.


Содержание


ВВЕДЕНИЕ……………………………………………...……...……3

  1. ЦИФРОВЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ……………….4

  2. ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ……………………………………….8

  3. СХЕМЫ РЕАЛИЗАЦИИ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ……….11

3.1. Ключевой режим работы биполярного транзистора………11

3.2. Транзисторно-транзисторная логика……………………….13

3.3. Логические элементы на основе полевых транзисторов….14

3.3.1. МОП-транзисторная логика на ключах одного типа про-

водимости…………………………………………………….14

3.3.2. МОП-транзисторная логика на комплиментарных транзисто-

рах (КМОП-логика)………………………………………….15

3.4. Эмиттерно-связанная логика………………………………...16

3.5. Интегральная инжекционная логика (ИІЛ-логика)………..18

  1. ТРИГГЕРЫ………………………………………………………….22

    1. RS-триггер……………………………………………………22

    2. Д-триггер……………………………………………………..24

    3. Т-триггер……………………………………………………..25

    4. JK-триггер……………………………………………………27

5. ЦИФРОВЫЕ СЧЕТЧИКИ ИМПУЛЬСОВ……………………….30

6. РЕГИСТРЫ…………………………………………………………32

    1. Параллельные регистры……………………………………32

    2. Последовательные регистры……………………………….33

7. МИКРОПРОЦЕССОРЫ………………………...…………………36

Список литературы……………………….…………………..……39


Евстигнеев Анатолий Николаевич

Кузьмина Татьяна Георгиевна

Новотельнова Анна Владимировна


ОСНОВЫ ЦИФРОВОЙ ЭЛЕКТРОНИКИ


Методические указания

для самостоятельного изучения дисциплины


''Электротехника и электроника''


для студентов всех специальностей


Редактор Корректор


ЛР №020414 от 12.02.97

Подписано в печать Формат 60x80 1/16. Бум.


Печать офсетная. Усл. печ. л. Печ. л. Уч.- изд. л.

Тираж 500 экз. Заказ № . С


СПбГАХПТ 191002, Санкт-Петербург, ул. Ломоносова, 9

ИПЦ СПбГАХПТ. 191002, Санкт-Петербург, ул. Ломоносова, 9