Сборник Лекций по матану

width="556" height="206" />

Будем называть функцию возрастающей в точке x0, если она непрерывна в этой точке и возрастает в некоторой ее окрестности. Подобным образом можно определить функцию, убывающую в точке.

Приведем без доказательства важную для исследования функций теорему.

Если f(x) > 0 на промежутке (a;b), то на этом промежутке функция f(x) вогнута. Если f(x) < 0 на промежутке (a;b), то на этом промежутке функция f(x) выпукла.

Из положительности второй производной функции на промежутке следует возрастание первой производной на этом промежутке, а это, как показано на рисунке 5, – признак вогнутой функции. Аналогичным образом иллюстрируется второе утверждение теоремы.

Если x0 – точка перегиба функции f(x), то f(x0) = 0.

Приведем другую формулировку достаточных условий экстремума функции.

Если в точке x0 выполняются условия:

1) f(x0) = 0; f(x0) < 0, тогда x0 – точка максимума;

2) f(x0) = 0; f(x0) > 0, тогда x0 – точка минимума;

3) f(x0) = 0; f(x0) = 0, тогда вопрос о поведении функции в точке остается открытым. Здесь может быть экстремум, например в точке x= 0 у функции y = x4, но может его не быть, например в точке x= 0 у функции y = x5. В этом случае для решения вопроса о наличии экстремума в стационарной точке можно использовать достаточные условия экстремума, приведенные выше.

Рассмотрим пример из микроэкономики.

В количественной теории полезности предполагается, что потре­битель может дать количественную оценку (в некоторых единицах измерения) полезности любого количества потребляемого им товара.

Это означает существование функции полезности TU аргумента Q –количества купленного товара. Введём понятие предельной полезности, как добавочной полезности, прибавляемой каждой последней порцией товара. Далее построим двумерную систему координат, откладывая по горизонтальной оси

количество потребляемого товара Q, а по вертикальной оси – общую полезность TU, как это сделано на рисунке 7. В этой системе координат проведем график функции TU = TU(Q). Точка Q0 на горизонтальной оси означает количество приобретенного товара, величина Q –добавочный приобретенный товар. Разность TU = TU(Q0 + Q) – TU(Q0)   добавочная полезность, полученная от покупки “довеска” Q. Тогда добавочная полезность от последней приобретенной порции (или единицы количества) товара вычисляется по формуле TU / Q (Курс экономической теории. Под общей редакцией проф. Чепурина М.Н. 1995, стр. 122). Эта дробь, как можно видеть, зависит от величины Q. Если здесь перейти к пределу при  0, то получится формула для определения предельной полезности MU:

.

Это означает, что предельная полезность равна производной функции полезности TU(Q). Закон убывающей предельной полезности сводится к уменьшению этой производной с ростом величины Q. Отсюда следует выпуклость графика функции TU(Q). Понятие функции полезности и представление предельной полезности в виде производной этой функции широко используется в математической экономике.



58


§9. Неопределенный интеграл.

Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x).

Например, для функции x2 первообразной будет функция x3/3.

Если для F(x) установлено равенство dF(x) = f(x)dx, то F(x) первообразная для f(x), так как .

Рассмотрим две теоремы, которые называются теоремами об общем виде всех первообразных данной функции.


Теорема 1. Если F(x) – первообразная для f(x) на (a;b), то F(x) + C, где C число, тоже первообразная для f(x) на (a;b).

Доказательство.

(C) F C + 0 =  f

По определению F + C первообразная для f.

Прежде чем рассмотреть теорему 2, докажем две вспомогательные теоремы.

Если функция g(x) постоянна на (a;b), то g(x) = 0.

Доказательство.

Так как g(x) = C, справедливы равенства: g(x) = C = 0 (здесь, как и ниже, через C обозначено произвольно выбранное число).

Если g(x) = 0 при всех x(a;b), то g(x) = C на (a;b).

Доказательство.

Пусть g(x) = 0 во всех точках (a;b). Зафиксируем точку x1(a;b). Тогда для любой точки x(a;b) по формуле Лагранжа имеем

g(x) – g(x1) = g()(– x1)

Так как (x; x1), а точки x и x1 принадлежат промежутку (a;b), то g() = 0, откуда следует, что g(x) – g(x1)=0, то есть g(x) = g(x1)=const.

Теорема 2. Если F(x) есть первообразная для f(x) на промежутке (a;b), а G(x) – другая первообразная для f(x) на (a;b), то C, где Cчисло.

Доказательство.

Возьмем производную от разности – F: (– F) = G – F =
– f = 0. Отсюда следует: G – F = C, где C число, то есть F + C.

Множество всех первообразных для функции f(x) на промежутке (a;b) называется неопределенным интегралом и обозначается f(x)dx. Если F(x) – первообразная для f(x), то f(x)dx = F(x+ C, где C – произвольное число.

Вычисление неопределенного интеграла от заданной функции называется интегрированием.

Из определения неопределенного интеграла следует, что каждой формуле дифференциального исчисления F(x) = f(x) соответствует формула f(xdx = F(x+ C интегрального исчисления. Отсюда получается таблица неопределенных интегралов:


1)  dx = x + C;

7)  cosx dx = sin+ C;

2)  xdx=(1);

8) ;

3) ;

9) ;

4)  exdx =ex+C;

10)

5)  axdx =axlogae+C (1) ;

11)

6)  sinx dx=-cosx + C;

12) .


Неопределенный интеграл обладает следующими свойствами:


1) ( f(x) dx )=f(x);

4) d f(x)=f(x)+C ;

2) f (x) dx= f(x)+C ;

5) kf(x)dx=kf(x) dx;

3) d f(x) dx= f(x)dx;

6) (f(x)+g(x))dx= f(x) dx+g(x) dx ;

  1. Если f(x) dx = F(x) + C, то f(ax+b) dx =

(a 0).

Все эти свойства непосредственно следуют из определения.

§10. Замена переменной в неопределенном интеграле

Если функция f(x) непрерывна, а функция (t) имеет непрерывную производную (t), то имеет место формула

 f((t))(tdt =  f(x) dx, где x = (t).

Можно привести примеры вычисления интеграла с помощью перехода от левой части к правой в этой формуле, а можно привести примеры обратного перехода.

Примеры. 1. I =  cos(t3tdt. Пусть t3 = x, тогда dx = 3t2dt или t2dt = dx/3.

.

2. . Пусть ln t = x, тогда dx = dt/t.

3. . Пусть x = cos t, тогда dx = - sint dt, и

.

4. . Пусть x = sin t, тогда dx = cos dt, и

.

§11. Формула интегрирования по частям

Пусть u(x) и v(x) — дифференцируемые на некотором промежутке функции. Тогда

(uv) = uv + vu

Отсюда следует

 (uv)dx =  (uv + vu )dx  uv dx +  vu dx

или

uv dx = uv –  uv dx .

Отсюда следует формула, которая называется формулой интегрирования по частям:

 u(x)dv(x) = u(x) v(x) –  v(x)du(x)

Приведем примеры применения формулы интегрирования по частям.

Примеры. 1. I =  x cosx dx. Пусть u = x; dv = cosx dx, тогда du = dx; v = sinx. Отсюда по формуле интегрирования по частям получается:

I = x sinx –  sinx dx = x sinx + cosx + C.

2. I =  (x2 – 3x + 2e5xdx. Пусть x2 – 3x + 2 = u; e5xdx = dv. Тогда
du = (2x – 3) dx; .

.

К последнему интегралу применим метод интегрирования по частям, полагая 2x - 3 = u; e5xdx = dv. Отсюда следует: du = 2dx; , и окончательно получаем:

.

3. ;

;

.

В заключение покажем метод вычисления неопределенного интеграла, стоящего в приведенной выше таблице под номером 12:

.

Представим дробь в виде суммы двух дробей: и , и попытаемся найти неизвестные величины параметров A и B. Из равенства получим систему уравнений

с решением . Отсюда следует:

.

Полученный интеграл в обиходе обычно называют “высоким логарифмом”. Метод, которым он был найден, называется методом “неопределенных коэффициентов”. Этот метод применяется при вычислении интегралов от дробей с числителем и знаменателем в виде многочленов.



65


§12. Определенный интеграл

Пусть на промежутке [a;b] задана функция f(x). Будем считать функцию непрерывной, хотя это не обязательно. Выберем на промежутке [a;b] произвольные числа x1, x2, x3, , xn-1, удовлетворяющие условию:
a< x1,< x2<< xn-1,<b. Эти числа разбивают промежуток [a;b] на n более мелких промежутков: [a;x1], [x1;x2],  [xn-1;b]. На каждом из этих промежутков выберем произвольно по одной точке: c1[a;x1], c2[x1;x2],  cn[xn-1;b].

Введем обозначения: x1 = x– a; x2 = x x1 xn = b – xn-1.

Составим сумму:

.

Она называется интегральной суммой функции f(x) по промежутку [a;b]. Очевидно, что интегральная сумма зависит от способа разбиения промежутка и от выбора точек ci.

Каждое слагаемое интеграль­ной суммы представляет собой площадь прямоугольника, покрытого штриховкой на рисунке 1.

Введем обозначение:  = max(xi), i = 1, 2,  n.. Величину иногда называют параметром разбиения.

Рассмотрим процесс, при котором число точек разбиения неограниченно возрастает таким образом, что величина стремится к нулю. Определенныминтегралом

от функции по промежутку [a;b] называется предел, к которому стремится интегральная сумма при этом процессе, если предел существует:

.

Если такой предел существует, то он не зависит от первоначального разбиения промежутка [a;b] и выбора точек ci.

Число a называется нижним пределом интегрирования, а число b верхним пределом интегриро­вания.

Рассмотрим фигуру, ограни­ченную графиком непрерывной, неотрицательной на промежутке [a;b] функции f(x), отрезком [a;b] оси X, и прямыми x = a; x = b. Такую фигуру называют криволинейной трапецией. На рисунке 2 криволинейная трапеция выделена штриховкой. Площадь S этой трапеции определяется формулой

.

Если f(x) < 0 во всех точках промежутка [a;b] и непрерывна на этом промежутке (например, как изображено на рисунке 3), то площадь криволинейной трапеции, ограниченной отрезком [a;b] горизонтальной оси координат, прямыми x = a; x = b и графиком функции y = f(x), определяется формулой

.

Перечислим свойства определенного интеграла:

1) (здесь k   произвольное число);

2) ;

3) ;

4) Если c[a;b], то .

Из этих свойств следует, например, что .

Все приведенные выше свойства непосредственно следуют из определения определенного интеграла.

Оказывается, что формула из пункта 4 справедлива и тогда, когда c[a;b]. Пусть, например, c>b, как изображено на рисунке 4. В этом случае верны равенства

.

§13. Определенный интеграл как функция верхнего предела

Пусть функция f(t) определена и непрерывна на некотором промежутке, содержащем точку a. Тогда каждому числу x из этого промежутка можно поставить в соответствие число

,

определив тем самым на промежутке функцию I(x), которая называется определенным интегралом с переменным верхним пределом. Отметим, что в точке x = a эта функция равна нулю. Вычислим производную этой функции в точке x. Для этого сначала рассмотрим прира­щение функции в точке x при приращении аргумента x:

I(x) = I(x + x) – I(x) =

.

Как показано на рисунке 1, величина последнего интеграла в формуле для приращения I(x) равна площади криволинейной трапеции, отмеченной штриховкой. При малых величинах x (здесь, так же как и везде в этом курсе, говоря о малых величинах приращений аргумента или функции, имеем в виду абсолютные величины приращений, так как сами приращения могут быть и положительными и отрицательными) эта площадь оказывается приблизительно равной площади прямоугольника, отмеченного на рисунке двойной штриховкой. Площадь прямоугольника определяется формулой f(x)x. Отсюда получаем соотношение

.

В последнем приближенном равенстве точность приближения тем выше, чем меньше величина x.

Из сказанного следует формула для производной функции I(x):

.

Производная определенного интеграла по верхнему пределу в точке x равна значению подынтегральной функции в точке x. Отсюда следует, что функция является первообразной для функции f(x), причем такой первообразной, которая принимает в точке x = a значение, равное нулю. Этот факт дает возможность представить определенный интеграл в виде

. (1)

Пусть F(x) тоже является первообразной для функции f(x), тогда по теореме об общем виде всех первообразных функции I(x) = F(x) + C, где C — некоторое число. При этом правая часть формулы (1) принимает вид

I(x) – I(a) = F(x) + – (F(a) +C) = F(x) – F(a). (2)

Из формул (1) и (2) после замены x на b следует формула для вычисления определенного интеграла от функции f(t) по промежутку [a;b]:

,

которая называется формулой Ньютона-Лейбница. Здесь F(x) — любая первообразная функции f(x).

Для того, чтобы вычислить определенный интеграл от функции f(x) по промежутку [a;b], нужно найти какую-либо первообразную F(x) функции f(x) и подсчитать разность значений первообразной в точках b и a. Разность этих значений первообразной принято обозначать символом .

Приведем примеры вычисления определенных интегралов с помощью формулы Ньютона-Лейбница.

Примеры. 1. .

2. .

Сначала вычислим неопределенный интеграл от функции f(x) = xex. Используя метод интегрирования по частям, получаем: . В качестве первообразной функции f(x)  выберем функцию ex(x – 1) и применим формулу Ньютона-Лейбница:

I = ex(x – 1) = 1.

При вычислении определенных интегралов можно применять формулу замены переменной в определенном интеграле:

.

Здесь и определяются, соответственно, из уравнений () = a() = b, а функции f, ,  должны быть непрерывны на соответствующих промежутках.

Пример:.

Сделаем замену: ln x = t или x = et, тогда если x = 1, то t = 0, а если x = e, то t = 1. В результате получим:


.

При замене переменной в определенном интеграле не нужно возвращаться к исходной переменной интегрирования.

§14. Несобственные интегралы с бесконечными пределами

Если положить промежуток интегрирования бесконечным, то приведенное выше определение определенного интеграла теряет смысл, например, потому что невозможно осуществить условия n; 0 для бесконечного промежутка. Для такого интеграла требуется специальное определение.

Пусть функция y = f(x) определена и непрерывна на полубесконечном промежутке [a;), тогда несобственным интегралом с бесконечным пределом называется , если предел существует. Если этот предел не существует, то не существует и несобственный интеграл. В этом случае принято говорить, что несобственный интеграл расходится. При существовании предела говорят, что несобственный интеграл сходится.

Аналогично

и .

Примеры: 1. . Очевидно: , откуда следует

.

2. ; этот предел не существует, следовательно, не существует или расходится интеграл I.

3. ; здесь предел также не существует, и интеграл расходится.

Упражнения

1. Найти производные от следующих функций:

1)

;

2)

;

3)

;

3)

;

5)

;

6)

;

7)

;

8)

;

9)

;

10)

 ;

11)

где x = 1;

12)

;

13)

где t =  / 6;

14)

15)

;

16)

.