Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками
со смещением для нагруженного уравнения третьего порядка с кратными характеристиками" width="247" height="24" />.Удовлетворяя (14) граничным условиям (12), получим линейную алгебраическую систему трех уравнений относительно с определителем:
.
Положим, что . Тогда находят по формулам:
, (15)
, (16)
, (17)
где
,
,
,
,
,
,
,
,
,
,
,
,
.
Учитывая (15) – (17) в (14), получаем:
,
где ,
,
,
или
, (18)
где .
Если считать функцию известной, то (18) представляет собой интегральное уравнение Фредгольма второго рода с вырожденным ядром относительно . Обозначив
,
решение уравнения (18) будем искать в виде:
. (19)
После подстановки (19) в (18) имеем выражение:
.
Если , то определяется по формуле:
. (20)
Учитывая (19), (20) в (18), получаем:
, (21)
где ,
.
В равенстве (21) учтем значение . В результате будем иметь:
, (22)
где ,
,
,
,
,
.
Перепишем уравнение (22) в виде:
, (23)
где .
В силу условий, наложенных на заданные функции , можем заключить, что , следовательно .
Обращая интегральное уравнение Вольтерра второго рода (23), получаем:
, (24)
где – резольвента ядра . Заметим, что резольвента обладает такими же свойствами, что и ядро [3].
Заменяя в равенстве (24) функцию ее значением, получаем:
, (25)
где ,
.
Перепишем уравнение (25) в виде:
, (26)
где .
Решение уравнения (26) будем искать в виде:
, (27)
где .
Поступая аналогично предыдущему случаю, получим
, если .
Таким образом, имеем:
3 Труды молодых ученых № 3, 2007 |
где .
Уравнение (28) перепишем в виде:
, (29)
где .
Решение уравнения (29) ищем в виде:
, (30)
где .
Подберем теперь постоянную так, чтобы определенная формулой (30) функция была решением интегрального уравнения (29). С этой целью внесем выражение (30) для в левую часть (29). После простых вычислений получаем:
,
откуда
,
где положено, что
.
Таким образом, имеем:
. (31)
Полагая в равенстве , находим
,
если , т.е.