Эффективность координированного управления

COLSPAN=2>























































































































































































































V D E F G H K L M O
1 -







2
-






3

-





4


-




5



-



6




-


7





-

8






-
9







-
10 -
-





11 -

-




12 -


-



13 -



-


14 -




-

15 -





-
16 -






-
17
-
-




18
-

-



19
-


-


20
-



-

21
-




-
22
-





-
23

- -




24

-
-



25

-

-


26

-


-

27

-



-
28

-




-
29



- -


30



-
-

31



-

-
32



-


-
33




- -

34




-
-
35





-
-
Табл.П.1.2

Табл.П.1.3

Работа Месяцы (ti) Млн. руб. (Ci) Ki=(Ci-Ci)/(ti-ti)
A 2 5.8
B 2 1.9
C Г 3.5
D 3 6.4
E 2 4.5
F 2 7.2
G 3 7.8
H 2 4.7
I 3 9.9
J 2 2.0
K 2 5.9
L 3 8.2
M 3 8.8
N 2 7.1
O 3 8.5
P 2 3.4
Q 2 2.5

Приложение 2


Data file: var. 22

Linear Programming Data Screen

Number of constraints (2-99) 32 Number of variables (2-99) 26 minimize

minimize + 2.6yl + 2.3y4 + 3.2y5 + 3y6 + .6y7 + 3.7y8 + 2.4yl0 + 3.2yll + 1.8yl2 + 2.8yl3 + 1.5yl4

const 1 + 1x1 = 0
const 2 - 1x1 + 1x2 + lyl > 3
const 3 - 1x1 + 1x3 + ly2 > 2
const 4 - 1x1 + 1x4 + ly3 > 4
const 5 - 1x3 + 1x5 + ly5 > 3
const 6 - 1x2 + 1x6 + ly4 > 4
const 7 - 1x5 + 1x6 + ly9 > 2
const 8 - 1x3 + 1x7 + ly7 > 3
const 9 - 1x4 + 1x7 + ly8 > 4
const 10 - 1x3 -+- 1x8 + ly6 > 4
const 11 - 1x5 + 1x8 + lylO > 3
const 12 - 1x7 + 1x8 + lyll > 4
const 13 - 1x8 + 1x9 + lyl3 > 3
const 14 - 1x7 + 1x10 + lyl2 > 5
const 15 - 1x9 + 1x10 + lyl4 > 3
const 16 - 1x10 + 1x11 + lyl5 > 2
const 17 + 1x11 < 19
const 18 + lyl < 1
const 19 + ly2 < 0
const 20 + ly3 < 0
const 21 + ly4 < 1
const 22 + ly5 < 1
const 23 + ly6 < 1
const 24 + ly7 < 1
const 25 + ly8 < 1
const 26 + ly9 < 0
const 27 + lylO < 1
const 28 + lyll < 1
const 29 + lyl2 < 2
const 30 + lyl3 < 1
const 31 + lyl4 < 1
const 32 + lyl5 < 0

Приложение 3


Data file:var.22 Linear Programming Data Screen

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

minimize + 2.6yl + 2.3y4 + 3,2y5 + 3y6 + .6y7 + 3.7y8 + 2.4yl0 + 3.2yll
+ 1.8yl2 + 2.8yl3 + 1.5yl4
const 1: + 1x1 = 0
const 2: - 1x1 + 1x2 + lyl > 3
const 3: - 1x1 + 1x3 + ly2 > 2
const 4: - 1x1 + 1x4 + ly3 > 4
const 5: - 1x3 + 1x5 + ly5 > 3
const 6: - 1x2 + 1x6 + ly4 > 4
const 7: - 1x5 + 1x6 + ly9 > 2
const 8: - 1x3 + 1x7 + ly7 > 3
const 9: - 1x4 + 1x7 + ly8 > 4
const10: - 1x3 + 1x8 + ly6 > 4
const11: - 1x5 + 1x8 + lylO > 3
const12: - 1x7 + 1x8 + lyll > 4
const13: - 1x8 + 1x9 + lyl3 > 3
const14: - 1x7 + 1x10 + lyl2 > 5
const15: - 1x9 + 1x10 + lyl4 > 3
const16: - 1x10 + 1x11 + lyl5 > 2
const17: + 1x11 < 18
const18: + lyl < 1
const19: + ly2 < 0
const20: + ly3 < 0
const21: + ly4 < 1
const22: + ly5 < 1
const23: + ly6 < 1
const24: + ly7 < 1
const25: + ly8 < 1
const26: + ly9 < 0
const27: + lylO < 1
const28: + lyll < 1
const29: + lyl2 < 2
const30: + lyl3 < 1
const31: + lyl4 < 1
const32: + lyl5 < 0

Приложение 3.1.

Data file:anna Linear Programming Solution

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

Solution value = 4.3 Multiple Optimal Solutions Exist

Optimal Reduced Original Lower Upper

Value Cost Coeficnt Limit Limit
xl 0.00 0.00 0.00 0.00 0.00
x2 6.00 0.00 0.00 0.00 0.00
x3 5.00 0.00 0.00 0.00 0.00
x4 4.00 0.00 0.00 0.00 0.00
x5 8.00 0.00 0.00 0.00 0.00
x6 10.00 0.00 0.00 0.00 0.00
x7 8.00 0.00 0.00 -2.80 .9000001
x8 12.00 0.00 0.00 -2.80 .4000001
x9 14.00 0.00 0.00 -Infinity 1.30
xlO 16.00 0.00 0.00 -Infinity 2.80
xll 18.00 0.00 0.00 -Infinity 2.80
y1 0.00 2.60 2.60 0.00 Infinity
y2 0.00 0.00 0.00 0.00 0.00
y3 0.00 0.00 0.00 -Infinity 2.80
y4 0.00 2.30 2.30 0.00 Infinity
y5 0.00 3.20 3.20 0.^)0 Infinity
y6 0.00 3.00 3.00 0.00 Infinity
y7 0.00 0.60 0.60 0.00 Infinity
y8 0.00 0.90 3.70 2.80 infinity
y9 0.00 0.00 0.00 0.00 0.00
yl0 0.00 2.40 2.40 0.00 Infinity
yll 0.00 0.40 3.20 2.80 Infinity
yl2 0.00 1.80 1.80 0.00 Infinity
yl3 1.00 0.00 2.80 1.50 3.20
yl4 1.00 0.00 1.50 -Infinity 2.80
yl5 0.00 0.00 0.00 -Infinity 2.80

Приложение 4.


Data file:var.22 Linear Programming Data Screen

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

minimize + 2.6yl + 2.3y4 + 3.2y5 + 3y6 + .6y7 + 3.7y8 + 2.4yl0 + 3.2yll
+ 1.8yl2 + 2.8yl3 + 1.5yl4
const 1: + 1x1 = 0
const 2: - 1x1 + 1x2 + lyl > 3
const 3: - 1x1 + 1x3 + ly2 > 2
const 4: - 1x1 + 1x4 + ly3 > 4
const 5: - 1x3 + 1x5 + ly5 > 3
const 6: - 1x2 + 1x6 + ly4 > 4
const 7: - 1x5 + 1x6 + ly9 > 2
const 8: - 1x3 + 1x7 + ly7 > 3
const 9: - 1x4 + 1x7 + ly8 > 4
const 10: - 1x3 + 1x8 + ly6 > 4
const 11: - 1x5 + 1x8 + lylO > 3
const 12: - 1x7 + 1x8 + lyll > 4
const 13: - 1x8 + 1x9 + lyl3 > 3
const 14: - 1x7 + 1x10 + lyl2 > 5
const 15: - 1x9 + 1x10 + lyl4 > 3
const 16: - 1x10 + 1x11 + lyl5 > 2
const 17: + 1x11 < 17
const 18: + lyl < 1
const 19: + ly2 < 0
const 20: + ly3 < 0
const 21: + ly4 < 1
const 22: + ly5 < 1
const 23: + ly6 < 1
const 24: + ly7 < 1
const 25: + ly8 < 1
const 26: + ly9 < 0
const 27: + lylO < 1
const 28: + lyll < 1
const 29: + lyl2 < 2
const 30: + lyl3 < 1
сonst 31: + lyl4 < 1
const 32: + lyl5 < 0

Приложение 5.


Data file:var.22 Linear Programming Data Screen

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

minimize + 2.6yl + 2.3y4 + 3. 2y5 + 3y6 + . 6y7 + 3.7y8 + 2.4yl0 + 3.2yll + 1.8yl2 + 2.8yl3 + 1.5yl4
const 1 + 1x1 = 0
const 2 - 1x1 + 1x2 + lyl > 3
const 3 - 1x1 + 1x3 + ly2 > 2
const 4 - 1x1 + 1x4 + ly3 > 4
const 5 - 1x3 + 1x5 + ly5 > 3
const 6 - 1x2 + 1x6 + ly4 > 4
const 7 - 1x5 + 1x6 + ly9 > 2
const 8 - 1x3 + 1x7 + ly7 > 3
const 9 - 1x4 + 1x7 + ly8 > 4
const 10 - 1x3 + 1x8 + ly6 > 4
const 11 - 1x5 + 1x8 + lylO > 3
const 12 - 1x7 + 1x8 + lyll > 4
const 13 - 1x8 + 1x9 + lyl3 > 3
const 14 - 1x7 + 1x10 + lyl2 > 5
const 15 - 1x9 + 1x10 + lyl4 > 3
const 16 - 1x10 + 1x11 + lyl5 > 2
const 17 + 1x11 < 16
const 18 + lyl < 1
const 19 + ly2 < 0
const 20 + ly3 < 0
const 21 + ly4 < 1

const 22 + ly5 < 1

const 23 + ly6 < 1

const 24 + ly7 < 1

const 25 + ly8 < 1

const 26 + ly9 < 0

const 27 + lylO < 1

const 28 + lyll < 1

const 29 + lyl2 < 2

const 30 + lyl3 < 1

const 31 + lyl4 < 1

const 32 + lyl5 < 0


Приложение 5.1.


Data file: var. 22 Linear Programming Solution

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

Solution value =11.2
Multiple Optimal Solutions Exist

Optimal Reduced Original Lower Upper

Value Cost Coeficnt Limit Limit
xl 0.00 0.00 0.00 0.00 0.00
x2 5.00 0.00 0.00 0.00 0.00
x3 4.00 0.00 0.00 0.00 0.00
x4 4.00 0.00 0.00 -3.70 Infinity
x5 7.00 0,00 0.00 0.00 0.00
x6 9.00 0.00 0.00 0.00 0.00
x7 7.00 0.00 0.00 —Infinity 0.50
x8 10.00 0.00 0.00 —Infinity .9000001
x9 12.00 0.00 0.00 ---Infinity 2.20
xlO 14.00 0.00 0.00 —Infinity 3.70
xll 16.00 0.00 0.00 —Infinity 3.70
y12 0.00 2.60 2.60 0.00 Infinity
y2 0.00 0.00 0.00 0.00 0.00
y3 0.00 0.00 0.00 —Infinity 3.70
y4 0.00 2.30 2.30 0.00 Infinity
y5 0.00 3.20 3.20 0.00 Infinity
y6 0.00 3.00 3.00 0.00 Infinity
y7 0.00 0.60 0.60 0.00 Infinity
y8 1.00 0.00 3.70 3.20 Infinity
y9 0.00 0.00 0.00 0.00 0.00
ylO 0.00 2.40 2.40 0.00 Infinity
yll 1.00 0.00 3.20 —Infinity 3.70
yl2 0.00 1.80 1.80 0.00 Infinity
yi3 1.00 0.00 2.80 —Infinity 3.70
yl4 1.00 0,00 1.50 —Infinity 3,70
yl5 0.00 0.00 0.00 —Infinity 3,70

Приложение 6.


Data file:var.22 Linear Programming Data Screen

Number of constraints (2-99) 18 Number of variables (2-99) 35

maximize

maximize + 1I
const 1: + lal =2.1
const 2: + 1bl =2.1
const 3: + 1cl =2.3
const 4: - 1.06al + la2 + 1dl =2.2
const 5: - 1.06bl + lb2 + le1 =1.9
const 6: – 1.06cl + lc2 - 1.015el + le2 = .1
const 7: + 1.06a2 - la3 + 1.06dl - ld2 =1.1
const 8: + 1.015a3 - la4 + 1.06b2 - lb3 = 1.6
const 9: + 1.015b3 - lb4 + 1.06c2 - lc3 + 1.06e2 - le3 = 1
const 10: + 1.015b4 - lb5 + 1.06d2 - ld3 = .2
const 11: + 1.06a4 - la5 + 1.015b5 - lb6 + 1.035c3 - lc4 = 1.4
const 12: + 1.015c4 - lc5 + 1.035d3 - ld4 + 1.06e3 - le4 =2.4
const 13: + 1.06a5 - la6 + 1.06b6 - lb7 + 1.035d4 - ld5 = 1
const 14: + 1.06c5 - lc6 + 1.06e4 - le5 = 1
const 15: + 1.015e5 - le6 = 1
const 16: + 1.06a6 - la7 + 1.06b7 - lb8 + 1.06d5 - ld6 = 0
const 17: + 1.06c6 - lc7 = 0
const 18: + 1.035a7 + 1.035b8 + 1.015c7 + 1.035d6 + 1.06e6 – 1I = 0

Приложение 7.


Data file: var.22 Linear Programming