Разработка энергосберегающей технологии ректификации циклических углеводородов

VALIGN=BOTTOM>2.963 8.082 15 0.04 2.963 8.023 16 0.04 2.963 8.075 17 0.04 2.963 8.113

Минимальные энергозатраты технологический схемы достигаются при следующих значениях рабочих параметров:

ТЭА = 100 °С

соотношение F: ЭА = 1: 0,6

NЭА/NF/NБО = 5/12/23

NF колонны регенерации ЭА = 15

количество потока, отбираемого в боковую секцию – 85 кмоль/ч

флегмовое число в основной колонне – 3, 19

флегмовое число в боковой секции – 0,04

Выявление областей оптимальности в концентрационном симплексе.

Нами была проведена параметрическая оптимизация трех различных структур экстрактивной ректификации по критерию минимальных энергозатрат на разделение. В целом нами были рассмотрены восемь исходных составов питания (ЦГ-Б-ЭБ,% мольн.: 10-80-10, 10-10-80, 80-10-10, 0,333-0,333-0,334, 10-57-33, 57-10-33, 57-33-10, 10-33-57) расположенных в различных областях концентрационного симплекса.

Рис.29. Области оптимальности схем

Для каждой точки исходного состава был определен набор оптимальных параметров схем экстрактивной ректификации и выявлены области концентрационного симплекса, в каждой из которых оптимальна та или иная технологическая схема. Ниже приведем методику выявления областей оптимальности.

Для рассматриваемого объекта исследования – трехкомпонентной смеси углеводородов ЦГ-Б-ЭБ – концентрационный симплекс представляет собой равносторонний треугольник. В ходе работы его разбивали одномерными сечениями (линиями) путем закрепления концентрации одного из компонентов. На одномерном сечении размещали с равным шагом 2-4 точки. Для каждой из них был проведен расчет энергозатрат на разделение для всех синтезированных схем и проведено сравнение полученных значений энергопотребления для каждой точки. Затем нами были построены графики зависимостей критерия энергозатрат на разделение от концентрации одного из компонентов в потоке питания. На рис.30 приведен пример построения зависимости энергозатрат на разделение в сечении с содержанием бензола 10%мол.

Рис.30. Пример изменения энергозатрат на разделение (Q) в одномерном сечении от концентрации вещества в потоке питания для схем 1,2 и 3.

Таблица 19. Значения энергозатрат на разделение (Q) в одномерном сечении от концентрации вещества в потоке питания для схем 1,2 и 3.

Энергозатраты, ГДж/час
Xэб № Точки Схема1 схема2 Схема3
Хцг=10%
10 2 9.387 9.031 8.781
33.34 5 7.049 9.325 7.523
56.66 8 4.840 9.644 7.875
80 3 2.185 8.725 7.601
Хэб=10%
Xцг Точка Схема1 схема2 Схема3
10 2 9.387 9.030 8.781
56.66 7 8.520 7.182 6.666
80 4 7.404 5.397 5.455
Хэб=33,34%
Xцг Точка Схема1 схема2 Схема3
10 5 7.049 9.325 7.523
33.33 1 6.670 8.544 7.517
56.66 6 6.002 7.072 7.220
Хб=10%
Xэб Точка Схема1 схема2 Схема3
10 4 7.404 5.397 5.455
33.33 6 6.002 7.072 7.220
80 3 2.185 8.725 7.601
Хб=33,34%
Xэб Точка Схема1 схема2 Схема3
10 7 8.520 7.183 6.666
33.34 1 6.670 8.544 7.517

Продолжение.

56.66 8 4.840 9.644 7.875
Хцг=80%
Xэб Точка Схема1 схема2 Схема3
10 7 8.520 7.183 6.666
33.33 6 6.002 7.072 7.220

Далее в концентрационном симплексе соединяли граничные точки, соответствующие равенству энергозатрат для двух и более схем, тем самым получая области, в которых оптимальна та или иная схема. Границами искомых областей являются изоэнергетические многообразия, в которых наблюдается равенство энергозатрат для двух или более схем. Результаты представлены на рис 29.

Из рисунка 29 видно, что большую часть концентрационного симплекса занимает область оптимальности схемы с предварительным фракционированием; эта область прилегает к вершине тяжелокипящего компонента. Большой диапазон применимости и расположение области оптимальности этой структуры коррелирует с рядом известных эвристик. Например, с такими:

компонент, содержание которого существенно превышает содержание всех остальных компонентов исходной смеси, должен отбираться первым в общей последовательности выделения компонентов;

процесс разделения наиболее трудноразделимой пары компонентов должен проводится последним в общей последовательности разделения.

Сравнение результатов оптимизации схем.

В ходе работы была проведена параметрическая оптимизация технологических схем экстрактивной ректификации смеси циклогексан – бензол – этилбензол, принадлежащих различным классам структур: класс П – схемы, состоящие из двухотборных колонн (схемы–прообразы), класс Ф – схемы, содержащие сложные колонны с боковыми секциями (схемы–образы). В результате были найдены параметры (температура, расход, уровень ввода экстрактивного агента, положение тарелок питания всех колонн схемы, уровень и количество бокового отбора), обеспечивающие минимальные энергозатраты на разделение. Выше подробно были описаны все необходимые этапы оптимизационной процедуры для одной их схем каждого класса. Для остальных схем разделения мы провели подобную оптимизацию, включающую те же этапы.

Для смеси циклогексан – бензол – этилбензол нами был рассмотрен состав питания,%мол.: 10-80-10.

Обратимся к результатам оптимизации технологических схем. В табл.20 представлена совокупность параметров схем класса П (рис.31), обеспечивающих минимальные энергозатраты.

Рис.31. Технологические схемы класса П для разделения смеси циклогексан – бензол – этилбензол экстрактивной ректификацией, разделяющий агент – анилин

Для всех исследуемых структур температура подачи разделяющего агента достаточно высока, она превышает температуру кипения верхнего продукта, однако при этом анилин остается в жидкой фазе для обеспечения нисходящего потока экстрагента. Расход анилина варьируется от 0,6 до 0,7 на единицу потока исходного питания, это достаточно невысокие значения. Оптимизация этого параметра с учетом энергопотребления колонны регенерации позволяет существенно снизить энергозатраты.

Более подробные результаты, включающие энергопотребление каждой колонны технологических схем класса П представлены в табл.21.

Таблица 20. Оптимальные параметры схем разделения смеси циклогексан – бензол – этилбензол, состоящих из двухотборных колонн. ЭА – анилин

Параметр

Схема

ТЭА, °С F: ЭА NF1 NF 2 NF3 QΣ, ГДж/ч

Состав ЦГ–Б–ЭБ,% мол. = 10-80-10
Схема 1 100 1: 0,6 3/9 8 9 6,53
Схема 2 100 1: 0,6 3/9 11 18 9,52
Схема 3 90 1: 0,7 15 3/9 10 8,78

Таблица 21. Энергопотребление (ГДж/ч) и флегмовые числа колонн в схемах класса П


R Qконд Qкип

К1 К2 К3 К1 К2 К3 К1 К2 К3

Состав ЦГ–Б–ЭБ,% мол. = 10-80-10
Схема 1 5,79 0,63 1,98 2,23 2,99 0,75 5,97 2,06 3,60 0,87 6,53
Схема 2 5,79 0,10 0, 19 2,23 3,39 3,33 8,95 2,06 4,09 3,37 9,52
Схема 3 0,22 2,35 0,04 3,58 1,74 2,80 8,12 3,64 1,51 3,63 8,78

Сравнение энергопотребления схем для исследуемого состава питания показывает, что максимальная разница между структурами достигает 46%. Это говорит о значительной экономии при выборе оптимального технологического решения.

Профили температур, а также расходов жидкости и пара экстрактивной колонны для оптимальных технологических схем разделения смеси циклогексан – бензол – этилбензол состава питания 10-80-10%мол. представлены на рис.32.

Далее проанализируем данные, полученные в результате параметрической оптимизации схем класса Ф, содержащие сложные колонны с боковыми секциями Структуры исследуемых технологических схем были представлены на рис.21, а результаты параметрической оптимизации в табл22.

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса техно-логических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на пред-проектную проработку и ускоренному созданию энергосберегающих структур. Схема 2

Схема 1


Схема 2

Схема 3

Рис.32 Профили температуры и потоков жидкости и пара экстрактивной колонны для состава исходного питания ЦГ – Б – ЭБ = 10 – 80 – 10% мол.

Таблица 22. Оптимальные параметры схем разделения смеси циклогексан – бензол – этилбензол, содержащих колонны с боковыми секциями. ЭА – анилин

Параметр

Схема

ТЭА, °С F: ЭА NF1 NF 2 NF3 БО кмоль/ч QΣ, ГДж/ч

Состав ЦГ–Б–ЭБ,% мол. = 80-10-10
Схема 1-1 100 1: 0,6 3/9/22 7 99 6,10
Схема 1-2 100 1: 0,6 3/9 8/17 9 6,14
Схема 1-3 100 1: 0,6 3/11/26/34 90/15 5,75
Схема 2-1 100 1: 0,5 3/12 3/9 15 6,47
Схема 3-1 100 1: 0,6 15 5/12/23 85 8,02

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса технологических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на предпроектную проработку и ускоренному созданию энергосберегающих структур.

Оценка энергопотребления технологических схем, содержащих сложные колонны с боковыми секциями, показывает снижение тепловых нагрузок на кипятильники колонн по сравнению с традиционными структурами из простых двухотборных колонн. Результаты расчета по каждой колонне для схем класса Ф представлены в табл.23.

Таблица 23. Энергопотребление (ГДж/ч) и флегмовые числа колонн в схемах класса Ф

Схема R Qконд Qкип

К1 К2 К3 К1 К2 К3 К1 К2 К3

Состав ЦГ–Б–ЭБ,% мол. = 10-80-10
1-1 4,60 0,24 1,37 1,18 3,41 0,93 5,52 5,01 1,09 6,10
1-2 5,78 0,06 0,47 2,23 2,98 0,37 5,58 2,06 4,08 6,14
1-3 4,74 0,11 0,85 1,49 3,07 0,61 5,17 5,75 5,75
2-1 5,46 0,49 2,03 1,86 4,14 6,00 1,68 4,50 0,29 6,47
3-1 0,22 3, 19 0,04 3,58 0,94 2,96 7,48 3,64 4,38 8,02

Видно, что структурой, обладающей минимальным энергопотреблением оказывается для состава питания ЦГ – Б – ЭБ = 10-80-10% мол. – схема 1-3, состоящая из одной сложной колонны с двумя укрепляющими секциями, представленная на рис.33.

Рис.33. Оптимальные технологические схемы разделения класса Ф.

На рис.34 представлены профили температур и расходов жидкости и пара по высоте ректификационной колонны, содержащей две боковые секции (схема 1-3) Ф для состава ЦГ – Б – ЭБ = 10 – 80 – 10% мол.

Рис.34. Профили температуры и потоков жидкости и пара сложной колонны, содержащей два боковых отбора. Состав исходного питания ЦГ – Б – ЭБ = 10 – 80 – 10% мол.

Проведем количественное сравнение энергопотребления схем различных классов структур, для этого обратимся к табл.24. Здесь проведено сопоставление суммарных энергозатрат схем-прообразов и соответствующих им схем-образов, а также энергопотребление колонн технологических схем, которые подвергались непосредственно трансформации при синтезе структур. Так, например, для схемы 1 сравнивались нагрузки на кипятильники двухотборных колонн 1 и 2 для прообраза и соответствующей им сложной колонны 1 с боковой укрепляющей секцией для схемы-образа.

Таблица 24. Результаты сравнения энергопотребления технологических схем

Схема Суммарные энергозатраты, ГДж/ч

,%




Состав ЦГ–Б–ЭБ,% мол. = 10-80-10
1-1 6,53 6,10 6,58
1-2 6,53 6,14 5,97
1-3 6,53 5,75 11,94
2-1 9,52 6,47 32,04
3-1 8,78 8,02 8,66

Таблица 25. Результаты сравнения энергопотребления для трансформируемых комплексов колонн.

схема

энерго-

затраты, ГДж/час

1-1 1-2 1-3 2 3
Q12 5,66 - 6,53 - -

Q23 - 4,47
7,46 5,14
Q12 5,01 - 5,75 - -

Q23 - 4,08
4,79 4,38

,

%


11,48 8,72 11,94 35,79 14,79

Видно, что экономия энергозатрат в некоторых случаях существенна и превышает 10% -ую величину. Особенно явно это видно при сравнении энергопотребления колонн, участвующих в трансформации схем–прообразов в схемы–образы.

Таким образом, нами была рассмотрена экстрактивная ректификация азеотропной смеси циклогексан – бензол – этилбензол с использованием анилина в качестве разделяющего агента. Для осуществления разделения синтезированы схемы, принадлежащие разным классам, одни из них – это схемы, состоящие из двухотборных колонн, другие – схемы, содержащие сложные колонны с боковыми секциями. Последние относятся к структурам с частично связанными тепловыми и материальными потоками, позволяющие снизить энергопотребление за счет приближения к термодинамической обратимости. Связывание секций колонн потоками определенным образом позволяет отказаться от наличия кипятильников или дефлегматоров для боковых секций, которые являются источниками термодинамической необратимости. В целом организация разделения в колоннах со связанными потоками приводит к снижению энергозатрат. В ходе работы нами была показана эффективность использования таких структур по сравнению с традиционными двухотборными экстрактивными комплексами.


Выводы


Для разделения смеси бензол – циклогексан – этилбензол – анилин методом экстрактивной ректификации синтезированы технологические схемы, принадлежащие различным классам структур: схемы из двухотборных колонн и схемы, содержащие сложные колонны с боковыми секциями.

Проведена параметрическая оптимизация полученных технологических схем ректификации по критерию минимальных энергозатрат на разделение. В результате для каждой структуры найден набор параметров, обеспечивающих минимальное энергопотребление – температура, уровень ввода и расход экстрактивного агента, положение тарелок питания ректификационных колонн, для схем содержащих боковые секции – также количество и положение бокового отбора.

В результате анализа полученных результатов, выявлено, что применение схем с частично связанными тепловыми и материальными потоками (схем со сложными колоннами с боковыми секциями) позволяет снизить затраты на разделение (в данном случае для энергопотребления схем в целом экономия может превышать 10%).

Для разделения смеси бензол – циклогексан – этилбензол фиксированного состава (бензол: циклогексан: этилбензол = 10: 80: 10%мол) оптимальной по энергопотреблению является структура из одной сложной колонны, с двумя боковыми секциями.


Список использованной литературы


Серафимов Л.А. Технология разделения азеотропных смесей (дополнительная глава) в кн. Свентославский В. Азеотропия и полиазеотропия. - М.: “Химия”, 1968, 186 с.

Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. - М.: - “Химия”, 1975, 240 с.

Серафимов Л.А., Фролкова А.К. Фундаментальный принцип перераспределения полей концентраций между областями ректификации как основа создания технологических комплексов // Теор. осн. хим. технологии. - т.31, №2, 1997, с.184-193.

Гришунин А.В., Балашов М.И., Серафимов Л.А. Синтез комплексов ректификационных колонн для разделения трехкомпонентных азеотропных смесей с использованием принципов переходимости разделяющих многообразий // Разделение жидких неидеальных смесей, труды Алтайского политехнического института, Барнаул, 1974, с.45-49.

Петлюк Ф.Б., Серафимов Л.А. Многокомпонентная ректификация, теория и расчет. -М.:, Химия, 1983, 304 с.

Тимошенко А.В., Серафимов Л.А., Синтез технологических схем ректификации многокомпонентных смесей с одним бинарным азеотропом // Теор. осн. хим. технологии. -1999, т.33, №1, с.47-53.

Тимошенко А.В. Серафимов Л.А. Синтез и дискриминация технологических схем ректификационного разделения с использованием критерия энергозатрат. - В сб. “Наукоемкие химические технологии” III международная конференция, Тверь, 1995, с.65.

Тимошенко А.В., Серафимов Л.А., Тимофеев В.С., Глушаченкова Е.А. Синтез и анализ технологических схем для разделения трехкомпонентных азеотропных смесей. - в сб. “Наукоемкие химические технологии”, IV международная конференция, Волгоград, 1996, с.84.

Гельперин И. Н, Новикова К.Е. / Журнал прикладной химии – 1961. Т 34. - № 9. - С 11-16.

Тимофеев В.С., Серафимов Л. А "Принципы технологии основного органического и нефтехимического синтеза", Москва "Высшая школа" 2003 г, 536 с.

Айнштейн В.Г., Захаров М.К., Носов Г.А., Захаренко В.В., Зиновкина Т.В., Таран А.Л., Костаян А.Е. "Общий курс процессов и аппаратов химической технологии" т.2 Москва "Логос" "Высшая школа" 209023 г.1758с.

Berg L., Separation of benzene and toluene from close boiling nonaromatics by extractive distillation. // AIChE J., 1983, 29, 6, 961.

Duan Z. T., Development of extractive distillation. // Petrochem. Technol., 1978, 7, 2, 177.

Hafslund E. R. Propylene-propane extractive distillation. // Chem. Eng. Prog., 1969, 65, 9, 58.

Hilal N., Yousef G., Anabtawi M. Z., Operating parameters effect on methanol-acetone separation by extractive distillation. // Sep. Sci. Technol., 2002, 37, 14, 3291.

Кириченко Г.А. Исследование физико-химических основ технологии разделения продуктов алкилирования фенола метанолом на g-окиси алюминия. Автореф. дисс... . канд. техн. наук. - М.: МИТХТ, 1981. - 31 с.

Кива В.Н., Кириченко Г.А. Особенности ректификации с двухпоточной подачей питания / В кн.: Нефтехимические процессы в многофазных системах. Сборник научных трудов. - М.: ЦНИИТЭНЕФТЕХИМ, 1980, с.108-115.

Петлюк Ф.Б. Качественная теория, синтез и расчет технологических схем ректификации многокомпонентных неидеальных смесей. Дисс. докт. техн. наук. - М.: МИТХТ, 1983

Петлюк Ф. Б., Серафимов Л. А., Тимофеев В. С., Майский В.И. Юдин Е.Н., Аветьян М.Г. Способ тепломассообмена между жидкостями с различными температурами кипения / А. с. N1074555, приоритет от 16.07.82 г.

Фролкова А.К., Павленко Т.Г. Влияние организации потоков на процесс экстрактивной ректификации // Тез. докл. VI Всесоюз. конф. по ректификации, Северодонецк, 1991. - С.241-242.

Семенов Л.В. Межмолекулярные взаимодействия и разделение углеводородов с использованием селективных растворителей. Автореф. дисс. докт. хим. наук. – Л.: ЛТИ, 1986. – 49 с.

Пирог Л.А. Оценка эффективности агентов при разделении неидеальных смесей экстрактивной ректификацией. Дисс. канд. техн. техн. наук. – М.: МИТХТ, 1987.

R. C. Everson, B. J. van der Merwe. The effects of selected solvents on the relative volatility of a binary systems consisting of 1-octene and 2-hexanone // Fluid Phase Equilibria. - 1998. - №.143. - pp.173-184.

Jose M. Resa, Cristina Gonzalez, Miguel A. Betolaza, Aitor Ruiz. Behavior of butyl ether as entrainer for the extractive distillation of the azeotropic mixture propanone +diisopropyle ether. Isobaric VLE data of the azeotropic components with the entrainer // Fluid Phase Equilibria. - 1999. - №.156. - pp.89-99.

Alberto Arce, Jose Martinez-Ageitos, Eva Rodil, Ana Soto. Phase equilibria involved in extractive distillation of 2-methoxy-2-methylpropane+methanol using 1-butanol as entrainer // Fluid Phase Equilibria. - 2000. - №.171. - pp. 207-218.

Rodriguez-Donis, V. Gerbaud and X. Joulia. Entrainer selection rules for the separation of azeotropic and close-boiling-temperature mixtures by homogeneous batch distillation process // Ind. Eng. Chem. Res. - 2001. - V.40. - pp.2729-2741.

Зарецкий М.И. Разработка научных основ новой технологии селективного разделения смесей органических соединений с близкими физико-химическими свойствами. Автореф. дисс. докт. хим. наук. – М.: МИТХТ, 1990.

Фролкова А.К., Павленко Т.Г., Тимофеев В.С. Выбор селективных разделяющих агентов на основе анализа избыточных термодинамических функций // Тез. докл. VI Всесоюз. конф. по термодинамике орг. соединений, Минск, 1990. –С.105.

Zhigang Lei, Chengyue Li, Biaohua Chen Extractive Distillation: A Review // Separation and Purification Reviews, 2003, Vol.32, No.2, pp.121

Фролкова А.К. Разработка технологических схем разделения полиазеотропных смесей с использованием автоэкстрактивной ректификацией. Дисс. … канд. техн. наук. – М.: МИТХТ, 1980

Ханина Е.П. Исследование влияния структур фазовых диаграмм и рециклов на технологические схемы разделения. Дисс. …канд. техн. наук. – М.: МИТХТ, 1978

Павленко Т.Г., Фролкова А.К., Ханина Е.П., Перфильева А.С., Тимофеев В.С. О роли флегмы в процессах экстрактивной и автоэкстрактивной ректификации // Сб. "Основной органический синтез и нефтехимия". – Ярославль: ЯПИ. – Вып. 19, 1983. – С.76-81

Виджесингхе А. М.Д.Ч. Разработка технологических комплексов специальных методов ректификации для регенерации растворителей. Автореф. дисс. …канд. техн. наук. – М.: МИТХТ, 1985. – 21 с.

Лапшина В.Б. Разработка технологии разделения полиазеотропных смесей растворителей, образующихся в производстве синтетической аскорбиновой кислоты. Автореф. дисс. …канд. техн. наук. – М.: МИТХТ, 1988. – 22 с.

Хассиба Бенюнес. Закономерности разделения азеотропных смесей в присутствии селективных разделяющих агентов // Дисс…канд. техн. наук. М.: МИТХТ – 2002.

Коган В.Б. Азеотропная и экстрактивная ректификация. - Л.: Химия, 1971. - 432 с.

Юсеф Джорж Джамиль. Влияние расхода разделяющего агента на разделение азеотропных смесей экстрактивной и автоэкстрактивной ректификации. Дисс…канд. техн. наук. – М.: МИТХТ, 1989.

Фролкова А.К., Павленко Т.Г., Тимофеев В.С. К оценке расхода разделяющего агента в процессах экстрактивной и автоэкстрактивной ректификации // ЖПХ. - 1987. - № 3. - С.631-634.

Вerg L. Selecting the agent for distillation processes // Chem. Eng. Progr. 1969, V 65. - № 9. – P.52-57.

Susksmith I. Extractive distillation saves energy // Chem. Eng. (USA). – 1982. – V.89, № 13. – P.91-95.

Бенедикт М. Многоступенчатые процессы разделения / Физическая химия разделения смесей. Сб. № 1/ Пер. с англ. М.Э. Аэрова. –М.: Изд. иностр. лит-ры, 1949. - с.11-72.

Wahnschafft O. M., Rudulier J. P., Westerberg A. W. A problem decomposition approach for the synthsis of complex separation processes with recycles // Ind. Eng. Chem. Res., 32, 1993, 1121–1141.

Heckl I., Kovacs Z., Friedler F., Fan L. T., Super-structure Generation for Separation Network Synthesis Involving Different Separation Methods // Chemical Engineering Transactions. - 2003, 3. - S1209-S1214.

Bauer M. H., Stichlmair W. Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming // Comp. Chem. Eng., 22(9), 1998, 1271–1286.

Brendel M. H., Friedler F., Fan L. T., Combinatorial Foundation for Logical Formulation in Process Network Synthesis // Comput. Chem. Eng. - 2000, V.24 - PP.1859-1864.

Gangyi Feng, L. T. Fan, F. Friedler Synthesizing alternative sequences via a P-graph-based approach in azeotropic distillation systems // Waste Management, 20, 2000, 639-643.

B. Bertok, F. Friedler, G. Feng, L. T. Fan Systematic Generation of the Optimal and Alternative Flowsheets for Azeotropic–Distillation Systems // European Symposium on Computer Aided Process Engineering, 11, 2001, 351–356.

G. Feng, L. T. Fan, P. A. Seib, B. Bertok, L. Kaloti, F. Friedler Graph-Teoretic Method for the Algorithmic Synthesis of Azeotropic-Distillation Systems // Ind. Eng. Res., 42, 2003, 3602–3611.

Thong D. Y. -C., Jobson M. Multicomponent azeotropic distillation.3. Column sequence synthesis // Chem. Eng. Sci., 56, 2001, 4417–4432.

Thong D. Y. -C., G. Liu, Jobson M., R. Smith Synthesis of distillation sequences for separation azeotropic mixture // Chem. Eng. Pross., 43, 2004, 239–250.

Thong D. Y. -C., Jobson M. Multicomponent azeotropic distillation.1. Assessing product feasibility // Chem. Eng. Sci., 56, 2001, 4369–4391.

Серафимов Л.А., Тимошенко А.В. Графометрия технологических схем ректификационного разделения многокомпонентных зеотропных смесей (Часть II): Учебное пособие. – М.: ООО Полинор-М, 1996. – 47c.

Sargent R. W. H, Gaminibandara K. Optimum Design of Plate Distillation Columns. // Optimization in Action; Dixon, L. W. C., Ed.; Academic Press: London. – 1976, p.267–273.

Agrawal R. Synthesis of Distillation Column Configurations for a Multicomponent Separtion. // Ind. Eng. Chem. Res. – 1996, v.35, p.1059–1071.

Agrawal R. A Method to Draw Fully Thermally Coupled Distillation