Разработка энергосберегающей технологии ректификации циклических углеводородов

ESI = α12/ α23 (Ease of Separation Index) авторами предложен ряд эвристик, представленных в табл.1.

Таблица 1. Результаты исследования [63]


Содержание компонента в питании,% мольн. Схема с минимальными энергозатратами

ЛКК СКК ТКК
ESI<1,6
40-80
V


>50 <5 VI

<5 >50
VII


<15
III

В остальных случаях I или II

ESI1,6



>50 II


>50 5-20 V


>50 <5 VI

<5 >50
VII

В остальных случаях III
7.4038 5.3971 5.4552
6.0018 7.0718 7.2203
2.1852 8.7254 7.6007

В работах [64-66] для разделения трехкомпонентных зеотропных смесей ароматических углеводородов (бензол–толуол–кумол и бензол–толуол–этилбензол) рассмотрены технологические схемы ректификации, состоящие из простых колонн и сложных колонн с боковыми отборами (рис.11).

Исследования проводились при различных составах питания и качествах продуктовых потоков. В качестве критерия оптимизации были выбраны энергозатраты на разделение.

Рис.11. Варианты схем разделения трехкомпонентной зеотропной смеси

В результате авторами было получено распределение изокритериальных многообразий в концентрационном симплексе (рис.12), а также предложены критерии применения сложных колонн с боковыми оборами:

Качество продуктовых потоков менее 99%.

Содержание легкого компонента в питании 15-25% мол. (для схемы 3).

Содержание тяжелого компонента в питании 15-25% мол. (для схмы4)

Рис.12. Расположение изоэнергетических многообразий в концентрационных симплексах исходных составов питания трехкомпонентных зеотропных смесей при качестве продуктовых потоков 99 (а), 95 (б), 90 (в), 80%мол (г). - – балансовые ограничения. Подмножества соответствуют схемам 1 – 4 рис.11

В работах [64, 67] на примере разделения двух четырехкомпонентных смесей (гексан – 2,4-диметилпентан – гептан –3-метилгептан и гексан – гептан – октан – 3,3,5-триметилгептан) исследовано распределение изоэнергетических многообразий схем трех классов: из простых двухсекционных колонн (класс П), из сложной колонны с двумя боковыми отборами (класс I), из одной простой колонны и одной сложной колонны с боковым отбором (класс Ω). Всего исследовано 18 схем при качестве продуктовых потоков 90%мол.

На основании анализа распределения областей авторами показано, что геометрия расположения изоэнергетических многообразий схем классов I и Ω примерно совпадает с геометрией изоэнергетического многообразия соответствующей схемы-прообраза класса П. Таким образом, можно говорить о том, что структура схемы множества П является наиболее общим критерием, определяющим взаимосвязь исходный состав питания – структура оптимальной технологической схемы ректификации. Изменение качества продуктовых потоков ведет лишь к изменению структуры оптимальной схемы внутри группы, заданной элементом подмножества П.

Однако все работы, посвященные определению распределения областей оптимальности, рассматривали только ректификацию зеотропных смесей.

Таким образом, представляется интересным рассмотреть возможность применения принципа приближения и термодинамической обратимости к экстрактивной ректификации, с одной стороны, и выявить области оптимальности схем экстрактивной ректификации, с другой стороны.

Постановка задачи

Целью данной работы является разработка технологии разделения азеотропной смеси циклогексан – бензол – этилбензол методом экстрактивной ректификации, обладающей минимальными энергозатратами. Для этого планируется синтезировать все возможные структуры экстрактивной ректификации смеси, состоящие из двухотборных колонн, а также схемы, содержащие сложные колонны с боковыми секциями. Затем провести параметрическую оптимизацию полученных вариантов по критерию минимальных энергозатрат. Сравнение полученных результатов позволит выявить наименее энергоемкую технологическую схему.

Другой задачей является исследование изменения структуры оптимальной технологической схемы в зависимости от состава исходного питания.

Расчетно – экспериментальная часть

Объект исследования

Объектом исследования была выбрана трехкомпонентная смесь: циклогексан - бензол – этилбензол, компоненты которой входят в состав пироконденсата, а также получаются в процессе сухой перегонки угля с целью выделения бензола. Данная смесь содержит бинарный гомогенный азеотроп с минимумом температуры кипения на стороне бензол–циклогексан. Разделение азеотропной пары производят с применением специальных методов, в частности экстрактивной ректификации. В качестве разделяющего агента предложено использовать анилин [36]. Свойства индивидуальных компонентов и данные по азеотропии представлены в таблицах 2, 3 и 4.

Табл. 2. Свойства чистых компонентов


Формула Ткип, ◦С Ткрит, ◦С Ркрит, кг/см2 ρ, кг/м3

Мол. масса

г/моль

Бензол С6Н6 80,10 288,90 49,92 883,92 78,11
Циклогексан С6Н12 80,74 280,39 41,54 782,65 84,16
Этилбензол С8Н10 136, 19 344,00 36,80 870,96 106,17
Анилин C6H5NH2 184,35 425,85 54,14 1025,5 93,13

Табл. 3. Коэффициенты уравнения Антуана для описания давления паров чистых компонентов (lnP=A-B/(T+C), T–K, P–mm Hg)


А В С
Бензол 15,9008 2788,51 -52,36
Циклогексан 15,7527 2766,63 -50,50
Этилбензол 16,0195 3279,47 -59,95
Анилин 16,6748 3857,52 -73,15

Табл.4. Данные об азеотропии (P = 1атм)


Таз, ◦С Х2аз,% мол. Тип азеотропа
Бензол-циклогексан 77,6 46 гомогенный

На рис.13 представлен портрет фазовой диаграммы исследуемый смеси.

Рис.13. Фазовая диаграмма смеси циклогексан – бензол – этилбензол

В смеси ЦГ-Б-ЭБ азеотроп имеет минимальную температуру и является особой точкой типа неустойчивый узел. В концентрационном симплексе один пучок дистилляционных линий опирается на точки азеотропа и тяжелокипящего компонента.

Рассмотрим ход альфа-линий в смеси азеотропообразующих компонентов в присутствии разделяющего агента (рис.14. а) и расположение единичного альфа-многообразия в концентрационном симплексе исследуемой смеси (рис.14. б).



Рис.14. а - α - многообразия для системы ЦГ-Б - А при давлении 0.3 кг/см2.

б - единичное альфа–многообразие (αЦГ-Б) в системе циклогексан-бензол-этилбензол-анилин

На рис.14. б единичное альфа–многообразие делит симплекс на две области. Область α<1 прилегает к легкокипящему циклогексану и занимает относительно небольшую площадь концентрационного симплекса. Здесь максимальным коэффициентом распределения обладает бензол. В области α>1 напротив максимальным коэффициентом распределения обладает циклогексан, при этом, если исходный состав питания принадлежит данной области, циклогексан может быть выделен в качестве дистиллата экстрактивной колонны.

Для описания парожидкостного равновесия системы нами была выбрана термодинамическая модель локальных составов NRTL. Параметры бинарного взаимодействия представленны в табл.5.

Таблица.5. Параметры уравнения NRTL

Бинарная пара

Бензол-этилбензол 1713,5 -2075,3 -0,038952
Бензол-циклогексан 258,95 -122,92 0,097010
Бензол-анилин -105,83 11,564 -0,90000
Циклогексан-этилбензол -14,769 33,026 0,90000
Этилбензол-анилин 101,15 160,57 0,80029
Циклогексан-анилин 244,02 310,89 -0,91797

Уравнение NRTL (non-random two-liquid – неслучайное двужидкостное) дает хорошие результаты для широкого круга систем, в частности для смесей в высокой степени неидеальных и для частично несмешивающихся систем.

Выражение для коэффициента активности имеет вид:

, (когда единицей измерения является °K);

Для каждой бинарной пары требуется три параметра (, , ), которые могут быть расширены включением в них температурной зависимости.

Концепция локальных составов позволяет учитывать структуру раствора, свойства чистых веществ и межмолекулярные взаимодействия разных типов (слабые неспецифические и сильные специфические). Согласно этой теории раствор рассматривается как упорядоченная структура. Для бинарной смеси можно выделить молекулы двух сортов, при этом молекула одного вида находится в окружении молекул другого вида. Зависимость между концентрациями компонентов внутри такого образования с общей молярной концентрацией компонентов в растворе описывается соотношением, учитывающим вероятность возникновения связей между разноименными молекулами.

Программный комплекс PRO/ II

Все расчеты были проведены с использованием программно-ориентированного комплекса PRO/II. Данная программа предназначена для проектно-поверочного расчета и поверочного расчета химико-технологических процессов и, в частности, процесса ректификации. Программа включает широкий набор методов, позволяющих создавать модели для широкого круга систем, использующихся в различных отраслях химической промышленности. В программе совместно с термодинамическими методами могут также быть использованы транспортные свойства индивидуальных соединений и их смесей. Последние включают в себя вязкости паров и жидкости, теплопроводности паров и жидкости и диффузию жидкости. Расчет поверхностного натяжения на границе пар-жидкость, хотя это и не транспортное свойство, также относится к этой группе. Транспортные свойства находят применение в строгих расчетах теплопередачи, расчетах перепадов давления, расчетах колонн с ситчатыми тарелками и насадочных колонн.

Для работы программы PRO/II требуется: IBM совместимый компьютер с процессором 80386 и выше, имеющий 4 и более мегабайта оперативной памяти. Операционная система MS Windows версия 3.1, Windows-95 или более поздняя версия.

Отчет по колонне включает в себя: суммарные данные по колонне. Суммарные данные по колонне содержат температуры, давления, расходы, тепловые нагрузки по каждой тарелке, информацию по потокам сырья и продуктов и общие тепловой и материальный балансы. По умолчанию расходы выводятся в мольных единицах. Путем выбора соответствующего варианта может быть выведен дополнительный суммарный отчет в массовых, объемных или газовых объемных единицах: молекулярные веса, реальные плотности, реальные объемные расходы и транспортные свойства, энтальпии потоков и стандартные плотности жидкости, К.П.Д. тарелок и/или К.П.Д. тарелок для отдельных компонентов, диаграмма температур, давлений, мольных расходов, расходов сырья, и продуктов и тепловых нагрузок нагревателей/холодильников, суммарная нагрузка тарелок, отчет по составам, таблица извлечения компонента, отчет по сепаратору, отчет по теплообменнику.

Синтез схем экстрактивной ректификации.

Схемы, содержащие простые двухотборные колонны.

Исследуемая смесь циклогексан – бензол – этилбензол является многокомпонентной, следовательно, ввиду поливаринтности процесса ректификации для ее разделения возможен ряд структур технологических схем. Для синтеза вариантов разделения используем методику, предложенную в [68], основанную на графовом представлении схем ректификации.

К настоящему времени сложилась классификация схем экстрактивной ректификации. Все возможные варианты разделения можно разбить на две большие группы [69]. К первой группе относятся схемы, в которых уже на первом этапе разделения применяется экстрактивный агент и, соответственно, снимаются термодинамико–топологические ограничения на составы продуктовых фракций. Вторая группа характеризуется предварительным фракционированием исходной многокомпонентной смеси вплоть до выделения фракции азеотропообразующих компонентов. Затем эту фракцию разделяют экстрактивной ректификацией.

Вначале приведем алгоритм синтеза схем разделения трехкомпонентной азеотропной смеси циклогексан (А) – бензол (В) – этилбензол (С), анилин (S) – разделяющий агент для случая, когда экстрактивный агент применяется на первой стадии разделения и, следовательно, подается в первую колонну:

Выбираем портрет парожидкостного равновесия в соответствии с классификацией Л.А. Серафимова [70]. В нашем случае это структура типа 3.1.0 т1а с прямой ориентацией дистилляционных линий (рис.13).

Синтезируем схемы ректификации четырехкомпонентной зеотропной смеси (рис.15 а-д) и представляем их в форме орграфов типа L (рис.16 а-д).

Рис.15. Схемы разделения (а-д) – четырехкомпонентной зеотропной смеси. А, В, С – компоненты смеси, S – тяжелокипящий агент, F – питание АВСS

Рис.16. Синтез графов – схем экстрактивной ректификации

В существующем наборе схем (рис.16 а-д) выделяем вершины, в которые необходимо направить ребро из S (экстрактивная колонна в схеме) и помечаем их. Для выбранного типа схем экстрактивной ректификации это вершины – колонны, первые по ходу разделения. Выделяем их темным кружком.

Проводим расщепление вершины F на Fn и S, удаляем вершину S, инциндентную исходящему ребру. Эта операция эквивалентна замене вершины F на Fn.

Связываем вершину S с помеченной вершиной-колонной ориентированным исходящим из S ребром и проверяем полученные структуры (рис.16 л-и) на работоспособность.

Из пяти полученных графов только два (рис.16 л, м) удовлетворяют условиям работоспособности. Они соответствуют технологическим схемам рис.17.

Рис.17. Работоспособные схемы для структуры парожидкостного равновесия 3.1.0.

Далее рассмотрим алгоритм синтеза для второго класса схем экстрактивной ректификации. Поскольку первоначально происходит фракционирование исходной смеси, то для всех схем такого класса характерно применение экстрактивного агента на любой из стадий разделения, кроме первой. Кратко рассмотрим основные стадии алгоритма:

Определяем тип диаграммы фазового равновесия (тип 3.1.0 т1а с прямой ориентацией дистилляционных линий).

Синтезируем схемы ректификации четырехкомпонентной зеотропной смеси. Но, определяя последовательность выделения компонентов, необходимо рассмотреть возможность фракционирования исходной смеси на азеотропную и зеотропную составляющие. Видно, что компонент С (в нашем случае – этилбензол) может быть выделен и без применения экстрактивной ректификации. Из предложенных пяти возможных вариантов разделения только одна схема (рис.18) отвечает этому условию.

Рис.18. Графы (а-в) и технологическая схема (г) экстрактивной ректификации.

Определяем вершины графа, в которые необходимо направить ребро из S (экстрактивная колонна в схеме) и помечаем их. Для выбранного типа схем экстрактивной ректификации это вершины – колонны разделения азеотропообразующих компонентов.

Организуем рецикл экстрактивного агента. В данном случае добавляем вершину, соответствующую подаче экстрактивного агента в колонну разделения азеотропной пары компонентов. На рис.18 б такая вершина обозначена S.

Проверяем полученные структуры на работоспособность. В этой схеме реализуется рецикл экстрактивного агента.

Таким образом, используя предложенный алгоритм, для разделения трехкомпонентной смеси с портретом фазового равновесия типа 3.1.0 т1а с прямой ориентацией дистилляционных линий нами было синтезировано три работоспособных схемы экстрактивной ректификации (рис. 19), две из которых принадлежат к группе схем с выделением азеотрообразующих компонентов в первой колонне и применением экстрактивной ректификации сначала разделения, третья схема относится ко второй группе схем с предварительным фракционированием смеси.

Рис. 19. Технологические схемы разделения смеси циклогексан – бензол – этилбензол экстрактивной ректификацией, разделяющий агент – анилин

Схемы, содержащие сложные колонны с боковыми секциями.

Следующим этапом синтеза схем экстрактивной ректификации является создание структур другого класса – схем со связанными тепловыми и материальными потоками, содержащих сложные колонны с боковыми секциями. Алгоритм синтеза основан на графовых преобразованиях технологических схем ректификации, ранее применяемый авторами [64, 71] для синтеза всех возможных вариантов схем разделения многокомпонентных зеотропных смесей, включающих сложные колонны. Поскольку трансформации по разработанным авторами [64, 71] правилам позволяют сохранить без изменений основные взаимосвязи между секциями колонн при операциях над потоковыми взаимосвязями между колоннами, можно определить все возможные варианты организации ТСР, содержащие сложные колонны.

В качестве начальных приближений будем использовать технологические схемы, состоящие из простых двухотборных колонн, синтезированные на предыдущем этапе. Напомним, что для системы циклогексан – бензол – этилбензол – анилин их три (рис. 19). Данные структуры являются схемами – прообразами, используя взаимосвязи которых, можно получить новые технологические решения – схемы-образы.

Представим схемы-прообразы (рис. 19) разделения смеси циклогексан – бензол – этилбензол – анилин в виде графов (рис.20 а, д, ж), вершины которого соответствуют сечениям, разделяющим секции, а ребра – потокам пара и жидкости внутри колонны и потоковым связям между колоннами. Произведем преобразования данных графов, соблюдая ряд правил:

Сохранение в неизменном виде экстрактивной части колонны схемы–прообраза (эта часть на рис.20 обозначена пунктирной линией).

Запрет на стягивание по ориентированному ребру, эксплицирующему рецикл экстрактивного агента.

В результате операции стягивания по ориентированному ребру (), эксплицирующему связь между колоннами, нами были получены графы схем, содержащих сложные колонны с боковыми секциями (рис.20 б, в, г, е, з).

Практически все полученные графы соответствуют схемам с боковыми укрепляющим секциями. Для структуры (рис. 20а) возможно преобразование одновременно по двум ребрам, что позволяет получить схему разделения в одной сложной колонне с двумя боковыми секциями. Структура схемы-прообраза (рис. 20д) приводит к схеме–образу с боковой исчерпывающей секцией.

Рис. 20. Графовые преобразования технологических схем разделения смеси циклогексан – бензол – этилбензол – анилин методом экстрактивной ректификации; а, д, ж – схемы 1, 2, 3 рис. 19; +, - – подвод и отвод тепла, – вершина, не обладающая свойством входа или выхода, – питание

Таким образом, нами синтезировано пять технологических структур разделения смеси циклогексан – бензол – этилбензол – анилин (рис.21). Все они относятся к классу схем, содержащих сложные колонны с боковыми секциями. В ряде случаев подобные структуры позволяют снизить энергозатраты на разделение.

Рис.21. Технологические схемы разделения смеси циклогексан – бензол – этилбензол – анилин, содержащие сложные колонны с боковыми секциями.

Параметрическая оптимизация.

Определение оптимальных рабочих параметров традиционных схем экстрактивной ректификации азеотропной смеси циклогексан - бензол-этилбензол

Принципиальные технологические схемы экстрактивной ректификации смеси циклогексан-бензол-этилбензол с использованием анилина в качестве разделяющего агента приведены на рис.22, 23 и 24.

Схемы 1 и 2 относятся к типу структур, где экстрактивный агент подается в первую колонну, что позволяет на первом этапе выделить азеотропообразующий компонент.

Рассмотрим схему 1 подробнее. Разделяющий агент подается в верхнюю часть колонны экстрактивной ректификации К1, а исходная смесь – в середину колонны. В качестве дистиллята колонны К1 в отбирается практически чистый высококипящий компонент - циклогексан (при давлении 0,3 кг/см2 он является наиболее легколетучим). Кубовая жидкость, содержащая бензол, этилбензол и анилин, направляется на разделение в колонну К2, где бензол выделяется в виде верхнего продукта, а анилин и этилбензол – в виде нижнего. Затем кубовая жидкость направляется в колонну регенерации разделяющего агента К3, где в качестве дистиллята отбирается этилбензол, а кубовый продукт содержит анилин. Далее регенерированный ЭА, после добавления небольшого количества свежего анилина, вновь подается в верхнюю часть колонны К1.

Схема 2. В целом данная структура отличается от предыдущей только расположением колонны регенерации разделяющего агента. Экстрактивная колонна К1 работает аналогично предыдущей схеме 1, где в качестве дистиллата выделяется легкокипящий циклогексан. Вторая колонна работает в режиме второго заданного разделения, ее кубовым продуктом является анилин, направляемый далее на рецикл. В последней колонне происходит разделение бензола и этилбензола.

Рассмотрим схему 3. Эта структура относится к классу схем, где первоначально происходит разделение многокомпонентной смеси на зеотропную и азеотропную составляющие, каждая из которых далее делится соответствующими способами. Исходная смесь, содержащая ЦГ-Б-ЭБ подается в колонну разделения К1, здесь происходит отделение этилбензола в виде кубового продукта от азеотропной смеси циклогексан-бензол. Дистиллат колонны подается на дальнейшее разделение в традиционный комплекс экстрактивной ректификации, состоящий из двух колонн К2 (экстрактивная колонна) и К3 (колонна регенерации экстрактивного агента).

Рис.22. Схема 1 разделения смеси ЦГ-Б-ЭБ методом экстрактивной ректификации.

Рис.23. Схема 2 разделения смеси ЦГ-Б-ЭБ методом экстрактивной ректификации.

Рис.24. Схема 3 разделения смеси ЦГ-Б-ЭБ методом экстрактивной ректификации.

Для выявления наиболее предпочтительного, наименее энергоемкого варианта разделения нами была проведена параметрическая оптимизация рассмотренных схем по критерию минимальных энергозатрат на разделение. Кроме того, для выявления закономерности трансформации оптимальной структуры технологической схемы от состава питания исходной смеси нами было проведено сравнение энергозатрат каждой из схем при оптимальных параметрах работы. В целом нами были рассмотрены восемь исходных составов питания (ЦГ-Б-ЭБ: 10-80-10, 10-10-80, 80-10-10, 0,333-0,333-0,334, 10-57-33, 57-10-33, 57-33-10, 10-33-57,% мол), расположенных в различных областях концентрационного симплекса. Для каждой точки исходного состава был определен набор оптимальных параметров схем экстрактивной ректификации и выявлены области концентрационного симплекса, в каждой из которых оптимальна та или иная технологическая схема.

В данной главе представим процедуру оптимизации схем экстрактивной ректификации на примере одного из составов исходной смеси ЦГ – Б - ЭБ = 10 – 80 - 10%мол. Процедура поиска областей оптимальности будет описана ниже.

Рассмотрим подробно процедуру оптимизации схемы с предварительным фракционированием смеси (рис.24).

Первоначально мы определили оптимальную совокупность рабочих параметров колонны экстрактивной ректификации. Энергоемкость разделения в этой колонне при фиксированных количестве, составе и температуре исходной смеси и заданном качестве продуктовых потоков зависит в основном от температуры и расхода экстрактивного агента, а также уровня ввода исходной смеси и разделяющего агента.

Все расчеты проводили на 100 кмоль/ч смеси ЦГ-Б-ЭБ указанного выше состава. Качество продуктовых потоков задавали равным 95% мол. целевого компонента, регенерированного анилина – 99,9% мол. Разделяемую смесь ЦГ-Б-ЭБ подавали в колонну при температуре кипения и давлении 0,3 кг/см2 (исходя из условий термической стабильности выделяемых в кубе компонентов). Эффективность колонн схемы составляла 20 т. т.

На первом этапе мы исследовали влияние на энергозатраты температуры подачи в колонну экстрактивного агента при фиксированном составе исходной смеси ЦГ-Б-ЭБ и закрепленном соотношении питания и экстрактивного агента (1: 2).

Мы рассчитали энергозатраты при температурах подачи анилина в колонну 70, 80, 90 и 100 °С. При этом для каждой температуры мы определили положение тарелок питания, при котором энергопотребление в кубе минимально. Результаты расчета приведены в табл.6.

Таблица 6. Зависимость энергозатрат от температуры подачи в колонну ЭА.

ТЭА, °С NЭА/NF

Энергозатраты, ГДж/ч