Эксплуатация средств вычислительной техники

необходимо проверить саму ЗВМ, а также такие внешние ус-ва как цветные струйные принтеры, нуждающиеся в смене или заправке катриджей красителем. Несколько ЭВМ имеют в качестве внешних устройств цветные плоттеры (графопостроители) , у которых достаточно сложный профилактический осмотр.

Рабочий день ремонтника длится 8 ч, но возможна и многосменная работа.

В некоторых случаях профилактический осмотр прерывается для устранения внезапных отказов сетевых серверов, работающих в три смены, т.е 24 ч в сутки. В этом случае текущая профилактическая работа прекращается, и ремонтник начинает без задержки ремонта сервера. Тем не менее, машина-сервер, нуждающаяся в ремонте, не может вытеснить другую машину-сервер, уже стоящую на внеплановом ремонте.

Распределение времени между поступлениями машин-серверов является пуассоновским со средним интервалом равным 48 ч. Если ремонтник отсутствует в момент поступления ЭВМ эти ЭВМ должны ожидать до 8ч утра. Время их обслуживания распределено по экспоненте со средним значение в 25 ч.Необходимо построить GPSS-модель для имитации производственной деятельности ВЦ. По полученной модели необходимо оценить распределение случайной переменной "число машин-серверов, находящихся на внеплановом ремонте". Выполнить прогон модели, имитирующей работу ВЦ в течении 25 дней, введя промежуточную информацию по окончании каждых пяти дней. Для упрощения можно считать, что ремонтник работает 8 ч в день без перерыва, и не учитывать выходные. Это аналогично тому, что ВЦ работает 7 дней в неделю.

Метод построения модели

Рассмотрим сегмент планового осмотра ЭВМ. (Рис.1.). Транзакты, подлежащие плановому осмотру, являются пользователями обслуживающего прибора (ремонтник), которым не разрешен его захват. Эти ЭВМ-транзакты проходят через первый сегмент модели каждый день с 8 ч утра.ЭВМ-транзакт входит в этот сегмент. После этого транзакт поступает в блок SPLIT, порождая необходимое число транзактов, представляющих собой ЭВМ, запланированные на этот день для осмотра.Эти ЭВМ-транзакты проходят затем через последовательность блоков SEIZE-ADVANCE-RELEASE и покидают модель. .


Рис.1. Первый сегмент

Сегмент "внепланового ремонта"ЭВМ-серверы, нуждающийся во внеплановом ремонте, двигаются в модель в своём собственном сегменте. Использование ими прибора имитируется простой последовательностью блоков PREEMPT-ADVANCE- RETURN. Блок PREEMPT подтверждает приоритет обслуживания ЭВМ-сервера (в блоке в поле В не требуется PR) (Рис.2.)

Сегмент "начало и окончание" рабочего дня ВЦ. Для того, чтобы организовать завершение текущего дня работы ВЦ по истечении каждого 8-ми ч дня и его начала в 8 ч утра, используется специальный сегмент. Т Транзакты-диспетчер входит в этот сегмент каждые 24 ч (начиная с конца первого рабочего дня), Этот транзакт, имеющий в моделе высший приоритет, затем немедленно поступает в PREEMPT, имеющий в поле В символа PR. Диспетчеру, таким образом, разрешено захватывать прибор-ремонтник вне зависимости от того, кем является текущий пользователь (если он есть). Далее, спустя 16 ч, диспетчер освобождает прибор-ремонтник, позволяя закончить ранее прерванную работу (при наличии таковой).(Рис.3.)

Сегмент "сбор данных для неработающих ЭВМ-серверов". Для сбора данных, позволяющих оценить распределение числа неработающих ЭВМ-приборов, используется этот отдельный сегмент. (Рис.4.)

Для этих целей используется взвешенные таблицы, которые позволяют вводить в них в один и тот же момент времени наблюдаемые случайные величины. Для этих целей включаются два блока - TABULATE, но если ввод в таблицу случаен (значение величин і2), то этот подход не годен. В этом случае используется необязательный элемент олеранд, называемый весовым фактором, обозначающий число раз, которое величина, подлежащая табулированию, должна вводится в таблицу. Это позволяет назначать разые веса различным наблюдаемым величинам.

Сегмент "промежуточная выдача". и окончание моделирования в конце дня используется последовательность GENERATE-TERMINATE (Рис.5.).

Cегменты представлены на рис.1 - 5.




Рассмотрим таблицу распределения (Табл. 3.1.

Таблица 3.1

Операторы GPSS Назначение
Транзакты:
1-вый сегмент ЭВМ, предназначенная для планового профилактического осмотра
2-рой сегмент ЭВМ-сервер, нуждающаяся во внеплановом ремонте
3-тий сегмент Диспетчер, открывающий в 8 ч утра ВЦ изакрывающий его через 8 ч
4-тый сегмент Наблюдатель, следящий за содержимым очереди для оценки распределения числа неисправных ЭВМ-серверов: Р1 - параметр, в который заносятся отметки времени Р2 - параметр, в который заносится дли-
5-тый сегмент Транзакт, обеспечивающий промежуточнуювыдачу результатов
Приборы:
BAY R Ремонтник
Функции:
JQBS Описывает равномерное распределениеот 1 до 3; получаемую величину можно интерпретировать как число, на 1 меньшее числа ЭВМ, прибывающих ежедневно на плановы осмотр
XPDIS Экспоненциальная ф-ия распределения
Очереди:
TRUBIL ЭВМ-серверы которые стоят неисправные
Таблицы:
LENTH Таблица, в которую заносят число неисправных ЭВМ-серверов

В табл.3.1 за единицу времени выбрана 1 минута.

Рассмотрим программу модели, составленную на языке GPSS.

XPDIS FUNCTION RN1,C24

0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2

,75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81

.95,2.99/.96,3.2/.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2

.999,7/.9998,8


JOBS FUNCTION RN1,C2

0,1/1,4


LENTH TABLE P2.0,1,W6


*

* MODEL SEGMENT 1

*

1 GENERATE 1440,,1,,2

2 SPLIT FN$JOBS,NEXT1

3 NEXT1 SEIZE BAY

4 ADVANCE 120,30

5 RELEASE BAY

6 TERMINATE

*

* MODEL SEGMENT 2

*

7 GENERATE 2880,FN$XPDIS,,,2

8 QUEUE TRUBL

9 PREEMPT BAY

10 ADVANCE 150,FN$XPDIS

11 RETURN BAY

12 DEPART TRUBL

13 TERMINATE

*

* MODEL SEGMENT 3

*

14 GENERATE 1400,,481,,3

15 PREEMPT BAY,PR

16 ADVANCE 960

17 RETURN BAY

18 TERMINATE

*

* MODEL SEGMENT 4

*

19 TRANSFER ,,,1,1,2,F

20 WATCH MARK 1


21 ASSIGN 2,0$TRUBL

22 TEST NE MP1,0

23 TERMINATE LENTH,MP1

24 TRANSFER ,WATCH

*

* MODEL SEGMENT 5

*

25 TRANSFER 7200..6241

26 TERMINATE 1

*

* CONTROL

*

START 5,,1,1

END


Логика работы модели

В моделе предполагается, что некоторое время, равное единице, соответствует 8 ч утра первого дня моделирования.Затем, первая (по счёту) ЭВМ выделенная диспетчером для планового осмотра, входит в модель, выйдя из GENERANE. Далее, каждая следующая первая ЭВМ, будет поступать в модель через 24 ч. ( блок 1, где операнд А=1440 ед.врем., т.е числу минут в 24 ч. Первое появление 5 диспетчера на ВЦ произойдет в момент времени, равный 481(блок 14). Это соответствует окончанию восьмого часа. Второй раз диспетчер появится через 24 часа.

Транзакт обеспечивающий промежуточную выдачу: впервые появится во время, равное 6241, выходя из блока 25. Это число соответствует концу 8-го часа пятого дня моделирования. ( 24 х 4 = 96 ч, 96 + 8 = 104. 104 х 60 =6240, 6240 + 1 = 6241 ч). Следующий транзакт появится через пять дней.

Блок 19 позволяет вести моделирование до времени в 35041, что соответствует 25 дням плюс 8 ч, выраженных в минутах.

Приоритетная схема представлена в табл.3.2.

Таблица 3.2.

Сегмент модели Интерпретация транзактов Уровень приорит.
3 Диспетчер 3
1 ЭВМ, прибывающие на плановый осмотр 2
2 ЭВМ-сервер, поступающая на внеплановый ремонт 2

4

Транзакт, наблюдающий за очередью 1
5 Транзакты, обеспечивающие выдачу на печать 0

Чтение таблицы сверху вниз эквивалентно просмотру цепи текущиж событий с начала и до конца моделирования

Результаты моделирования

Полученная статистика очереди ЭВМ-серверов на ремонт показывает, что на конец 25 дня среднее ожидания составляет 595 вр.ед., или около 19 ч. В среднем 0,221 ЭВМ-сервер ожидают обслуживания, и одновременно самое большее время 4 машины находятся в ожидании. За 25 дней на внеп- лановый ремонт поступило 13 машин.. Табличная информация указывает, что 83 % времени это были ЭВМ-серверы , ожидающие внепланового ремонта, 12% времени в ожидании находилась одна машина, 4% - две машины, и только 0,52% и 0,05% времени одновременно ожидали три и четыре машины. Для удобства результаты сведены в табл.3.3.

Таблица 3.3.

Число ожидающих ЭВМ Время ожида-ния в %
0 машин 83
1 машина 12
2 машины 4
3 машины 0,52
4 машины 0,05

Минимизация стоимости эксплуатационных расходов ВЦ средней производительности.

Пусть в состав ВЦ входит 50 персональных компьютеров ( в дальнейшем просто ЭВМ). Все ЭВМ работают по 8 ч в день, и по 5 дней в неделю. Любая из ЭВМ может выйти из строя, и в любой момент времени. В этом случае её заменяют резервной ЭВМ либо сразу, либо по мере её появления после восстановления. Неисправную ЭВМ отправляют в ремонтную группу, ремонтируют, и она становится резервной.

Необходимо определить, сколько ремонтников следует иметь, и сколько машин держать в ремонте, оплачивая их аренду. Парк резервных машин служит для подмены вышедших из строя ЭВМ. принадлежащих ВЦ. Оп- лата арендных машин не зависит от того находятся они в эксплуатации , или в резерве.

Цель анализа - минимизировать стоимость эксплуатации ВЦ. оплата рабочих в ремонтной группе составляет 3,75$ в ч. Арендная плата за одну ЭВМ составляет 30$ в день. Почасовой убыток при использовании менее 50 ЭВМ оценивается примерно в 20$ за ЭВМ. этот убыток возникает из за общего снижения промзводительности ВЦ. Считаем, что на ремонт вышедшей из строя ЭВМ уходит примерно 7ч, и распределение этого времении равномерное.

Необходимо определить, сколько ремонтников следует иметь, и сколько машин держать в ремонте, оплачивая их аренду. Парк резервных машин служит для подмены вышедших из строя ЭВМ. принадлежащих ВЦ. Оплата арендных машин не зависит от того находятся они в эксплуатации , или в резерве.

Среднее время наработки на отказ каждой ЭВМ распределено так же равномерно, и составляет 157 ± 25 ч. Это время и распределение оди- наково для всех ЭВМ ВЦ, так и для арендуемых ЭВМ.

Так как плата за аренду не зависит оттого, используют эти ЭВМ или нет, то и не делается попыток увеличить число собственных ЭВМ ВЦ.

Необходимо построить GPSS модель такой системы и исследовать на ней дневные расходы при разном числе арендуемых ЭВМ при при одинаковом числе ремонтников и от числа ремонтников при постоянном числе арендуемых ЭВМ.

Метод построения модели

Определим ограничения, которые существуют в моделируемой системе. Существуют три ограничения.

1. Число ремонтников в ремонтной группе.

2. Минимальное число ЭВМ, одновременно работающих на ВЦ.

3. Общее число ЭВМ циркулирующих в системе.

Для моделирования 1 и 2 ограничений удобно использовать многоканальные ус-ва ( термин взят из теории СМО), а третье ограничение-моделировать при помощи транзактов. При этом ремонтники и работающие ЭВМ, находящиеся в производстве, являются константами. При этом ЭВМ являются динамическими объектами, циркулирующими в системе.

Рассмотрим состояния в которых может находиться ЭВМ. Пусть в настоящий момент она находится в резерве. Тогда многоканальное ус-во NOWON (т.е. в работе) используется для моделирования работающих ЭВМ, будет заполнено, и резервные машины не могут войти в него. И тогда транзакт моделирующий резервную ЭВМ может после многократных попыток войти в NOWON. Проходя через блоки ENTER и ADVANCE транзакт моделирует время работы до тех пор, пока ЭВМ не выйдет из строя.

После выхода из строя ЭВМ транзакт покидает NOWON . При этом возникает возможность у другой резервной ЭВМ войти в него,и если транзакт ожидает возможность войти в многоканальное ус-во MEN (ремонтная группа. которая м.б. представлена даже одним ремонтником). Выйдя из MEN транзакт становится восстановленной ЭВМ. После ремонта он покидает MEN , освобождая ремонтника, который может начать немедленно ремонт другой ЭВМ. Сам транзакт поступает в ту часть модели, из которой он начинает попытки войти в NOWON.

Общее число ЭВМ циркулирующих в системе равно 50 плюс три ЭВМ резервных, и это число надо задать до начала прогона, используя ограничительные поля блока GENERITE. Для определения времени прогона будет использовать программный таймер, рассчитанный на время в 62440 ед.вр., что составляет 3 года, по 40 недель в году.

Рассмотрим таблицу определений (Табл.4.1).

Таблица 4.1

Операторы GPSS Назначение
Транзакты:
1-вый сегмент ЭВМ
2-рой сегмент Таймер
Многоканальные ус-ва
MEN Ремонтник
NOWON Накопитель на 50 ЭВМ наход. в раб.

Рассмотрим блок-схему программы.



Программа


STORAGE 5$MEN,3/5$NOWON,50

*

* MODEL SEGMENT 1

*

1 CNTRL GENERATE ,,,53

2 ENTER NOWON ,

3 ADVANCE 157,25

4 LEAVE NOWON

5 ENTER MEN

6 ADVANCE 7,3

7 LEAVE MEN

8 TRANSFER ,BACK

*

* MODEL SEGMENT 2

*

GENERATE 6240

TERMINATE 1

*

* CONTROL

*

START 1

1 CNTRL GENERATE ,,,54

CLEAR

START 1


1 CNTRL GENERATE ,,,55

CLEAR

START 1

STORAGE 5$MEN,4

1 CNTRL GENERATE ,,,53

CLEAR

START 1

1 CNTRL GENERATE ,,,54

CLEAR

START 1

1 CNTRL GENERATE ,,,55


CLEAR

START 1

STORAGE 5$MEN,5

1 CNTRL GENERATE ,,,53


CLEAR

START 1

1 CNTRL GENERATE ,,,53

CLEAR

START 1

1 CNTRL GENERATE ,,,54

CLEAR

START 1

1 CNTRL GENERATE ,,,55

CLEAR

START 1

END

Оценка результатов

При фиксированном числе ремонтников и при достаточно малом числе -арендуемых машин, расходы велики из-за снижения производительности ВЦ. При большом числе Дарендуемых машин, расходы велики из-за их избыточного числа. Очевидно, необходимо найти минимум между этими значениями (Рис.4.2).

При заданном числе арендуемых машин, число ремонтников так, как это представлено на Рис.4.3.

При малом числе ремонтников, расходы велики из-за оплаты простаивающих ремонтников.

В табл.4.2. показана величина нагрузки, проходящей через MOWON , как функция "ремонтник-арендуемые машины". При заданном числе ремонтников нагрузка растёт при увеличении числа арендуемых машины. Аналогично этому при заданном числе арендуемых машины нагрузка растёт при увеличении числа ремонтников.

Таблица 4.2

Число занятых ремонтников Число арендуемых машины

3 4 5
3 0,983 0,989 0,992
4 0,989 0,993 0,995
5 0,991 0,993 0,997

В табл.4.3 - 4.5 собраны значения расходов для соотношения "ре- монтник-Дарендуемые машины" В табл. 4.3 показаны фиксированные значе- ния оплаты труда ремонтников и арендуемой платы за машины..


Таблица 4.3

Число занятых ремонтников Число -арендуемых машин

3 4 5
3 180 210 240
4 210 240 270
5 240 270 300

В табл 4.4 указана стоимость уменьшения производительности,ВЦ.

Таблица 4.4

Число занятых ремонтников Число -арендуемых машин

3 4 5
3 136 88 64
4 88 56 40
5 73 56 24

В табл.4. показана сумма этих расходов.

Таблица 4.5

Число занятых ремонтников Число -арендуемых машин

3 4 5
3 316 298 304
4 298 296 310
5 312 326 324

Из последней таблицы можно сделать вывод о том, что наиболее выгодным соотношением является 4 ремонтника и 4 арендуемые машины.


Расчёт значений показателей надежности ЭВМ.

Рассмотрим пример

Так как общая структурная схема, состоящая из несколких отдельных, не приводится, то необходимо подсчитать число МИС,СИС и БИС, входящих в Ваше задание. После этого, используя табл.1. олределить общее число элементов заданной схемы. Будем считать, что к МИС относятся интегральные схемы (ИС) с числом выводов равным 16, к СИС с числом выходов - 24, а все остальные относятся к БИС.

Таблица 1.

Тип ИС Число резисторов Число конденсаторов электролит Число конденсаторов керамичес. Число светодиодов Число разъёмов
СИС 5 3 15 1 1
МИС 15 5 25 2 2
БИС 25 10 40 3 4

Число паяных соединений определяется как общее число выводов ИС, выводов резисторов, конденсаторов, светодиодов и число контактов разъёмов умноженное на два.

Пусть схема ВУ включает в свой состав следующие элементы:

МИС с 14 выводами - 20 Конденсаторы электролитические -3

СИС с 16 выводами - 16 Конденсаторы керамические -40

БИС с 14 выводами - 48 Паяные соединения -821

Разъёмы -1


Тогда lЕобщ.=4.5*10-7*20+4.0*10-7*16+3.2*10-7*3+1.0*10-5*5+

0.1*10-5*3+0.04*10-5*40+1.0*10-7*821+0.2*10-5*1

=1649.6*10-7

Так как ВУ не имеет резервных элементов, и выход из строя любого из элементов повлечёт за собой отказ всего устройства, то среднее время наработки на отказ определится как

Тм = 1/1694,6*10-7 = 5902 час.

Тогда вероятность безотказной работы за восьмичасовую смену составляет:

За время Т=1000 часов, вероятность составляет 0,8441


1.4. Надежность программного обеспечения.

Причины отказов ПО и их последствия. Модели надёжности программ.

3. АППАРАТНО-ПРОГРАММНЫЕ СРЕДСТВА КОНТРОЛЯ

3.1.СИСТЕМЫ АВТОМАТИЧЕСКОГО КОНТРОЛЯ ПРАВИЛЬНОСТИ ФУНКЦИОНИРОВАНИЯ ЭВМ

Функции и характеристики систем контроля. Классификация средств контроля. Контроль передачи информации* Циклические коды. Контроль арифметических операций. Само проверяемые схемы контроля. Примеры систем контроля современных ЭВМ.


3.2.СИСТЕМЫ ДИАГНОСТИРОВАНИЯ ЭВМ.

Методы построения и характеристики систем диагностирования. Метод командного ядра. Метод диагностирования на уровне логических схем. Метод микродиагностирования. Метод эталонных состояний.Метод диагностирования, ориентированный на проверку сменных блоков. Метод диагностирования с помощью схем встроенного контроля.Метод диагностирования с помощью само проверяемого дублирования. Метод диагностирования по регис трации состояния. Сервисные процессоры.


4.ОСОБЕННОСТИ ЭКСПЛУАТАЦИОННОГО ОБСЛУЖИВАНИЯ МИКРОПРОЦЕССОРНЫХ СИСТЕМ И ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ

Сигнатурный анализ. Особенности организации эксплуатационного обслуживания персональных компьютеров. Диалоговые системы диагностирования неисправностей в ПК. Вирусы и их типы. Поиск и устранение вирусов.

5. МЕТОДЫ ПРОЕКТИРОВАНИЯ ТЕСТОВ

Вероятностное тестирование. Детерминированные методы генерации тестов для для логических схем. описанных на вентильном и функциональном уровне.Понятие о тестируемом проектировании аппаратуры ЭВМ. Модификаци схем для раздельного тестирования комбинационных схем и триггеров.Моди- фикация схем для само тестирования.


6. ЗАЩИТА, СОХРАНЕНИЕ И ВОССТАНОВЛЕНИЕ БД

Проблемы эксплуатации БД. Программные методы защита БД от ошибок. Восстановление БД при аварийных ситуациях. Методы защиты информации от несанкционированного доступа.


7. ДИАГНОСТИРОВАНИЕ ПЕРИФЕРИЙНЫХ УСТРОЙСТВ

Диагностирование УПУ/ПУ с помощью процессора, тестеров, имитаторов каналов, и встроенных средств.

Диагностирование средств телеобработки данных; мультиплексора передачи данных и канала передачи данных.


8. ПРИНЦИПЫ АВТОМАТИЗАЦИИ ПРОФИЛАКТИЧЕСКИХ ИСПЫТАНИЙ

Типы профилактических мспытаний. Программные средства профилактических мспытаний. Автоматизация профилактических мспытаний с изменением напряжений вторичных источников питания.

Автоматическое накопление информации об ошибках, её обработка и использование.


9. МЕТОДЫ ПОВЫШЕНИЯ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ ЭВМ

Основные проблемы Зксплуатации систем электропитания ЭВМ. Защита ЭВМ от возмущений в системе электропитания.Защита ЭВМ от длительных перерывов электропитания


10. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Аппаратурные измерительные мониторы. Микропрограммные и программные измерительные мониторы.

Однокантактный логический пробник.Много кантактный логический пробник. Логический компаратор. Логический импульсный генератор. Измерители тока. Осциллографы. Логические анализаторы. Стенды проверки ТЭЗ.


11. ПРОЦЕССЫ ЭКСПЛУАТАЦИОННОГО ОБСЛУЖИВАНИЯ ЭВМ.

Структура процессов обслуживания ЭВМ. Комплексное централизованное обслуживание ЭВМ. Оборудование помещений для ЭВМ. ТБ при работе с ЭВМ. Обеспечение пожарной безопасности вычислительных центров. Процессы планово-профилактического обслуживания. Ведение журнала эксплуатации ЭВМ. Эксплуатационная документация. Особенности эксплуатации ОС. Обслуживание носителей данных.


ЗАКЛЮЧЕНИЕ

Значение системного подхода при разработке концепции и аппаратно- программных средств обслуживания ЭВМ. Современные тенденции развития технологии эксплуатационного обслуживания ВТ; диалоговые системы поддержки) обслуживания, дистанционное эксплуатационное обслуживание, интелектуализация средств диагностирования ЭВМ на основе использования диагностических экспертных систем.


Экзаменационные вопросы по ЭСВТ для гр. А19101

1. Особенности ЭВМ как объекта эксплуатационного обслуживания.

2. Основные эксплуатационные характеристики ЭВМ,

3. Расчет надежности ВУ

4. Модели эксплуатационного обслуживания ЭВМ.Модели потоков отказов и сбоев.

5. GPSS- модель процессов эксплуатационного обслуживания. Основные операторы языка.

6. Построение имитационной модели процессов отказов и восстановления ЭВМ. Программа.

7 Построение имитационной модели процессов отказов и восстановления ЭВМ. Результаты моделирования.

8. Построение имитационной модели процессов отказов и восстановления нескольких ЭВМ несколькими ремонтниками. Программа.

9. Построение имитационной модели процессов отказов и восстановления нескольких ЭВМ несколькими ремонтниками. Результаты моделирования. 10.Исследование модели эксплуатационного обслуживания ЭВМ. Программа.

11.Исследование модели эксплуатационного обслуживания ЭВМ.Результаты моделирования.

12.Исследование модели обслуживания нескольких ЭВМ с одним ремонтником. Программа.

13.Исследование модели обслуживания нескольких ЭВМ с одним ремонтником. Результаты моделирования.

14.Исследование модели обслуживания нескольких ЭВМ несколькими ремонтниками.Программа.

15.Исследование модели обслуживания нескольких ЭВМ несколькими ремонтниками.Результаты моделирования.

16.Исследование модели обслуживания ЭВМ с комбинированным восстановлением после отказов однотипных ТЭЗов.Программа.

17.Исследование модели обслуживания ЭВМ с комбинированным восстановлением после отказов однотипных ТЭЗов. Результаты моделирования.

18.Исследование модели обслуживания ЭВМ с комбинированным восстановлением после отказов различных ТЭЗов. Метод построения модели.

19.Исследование модели обслуживания ЭВМ с комбинированным восстановлением после отказов различных ТЭЗов. Программа модели.

20.Исследование модели обслуживания ЭВМ с комбинированным восстановлением после отказов различных ТЭЗов. Результаты моделирования.

21.Модель для имитации производственной деятельности ВЦ. Метод построения модели.

22.Модель для имитации производственной деятельности ВЦ. Программа модели.

23.Модель для и митации производственной деятельности ВЦ. Результаты моделирования.

24.Минимизировать стоимость эксплуатационных расходов ВЦ средней производительности. Метод построения модели.

25.Минимизировать стоимость эксплуатационных расходов ВЦ средней производительности. Программа модели.

26.Минимизировать стоимость эксплуатационных расходов ВЦ средней производительности. Результаты моделирования.

27.Расчёт значений показателей надежности ЭВМ.Рассмотреть пример.

28.Аппаратно-программные средства контроля.Системы автоматического контроля правильности функционирования ЭВМ.

Функции и характеристики систем контроля. Классификация средств контроля. Контроль передачи информации* Циклические коды. Контроль арифметических операций.Само проверяемые схемы контроля. Примеры систем контроля современных ЭВМ.

29.Аппаратно-программные средства контроля.Системы диагностирования ЭВМ.Методы построения и характеристики систем диагностирования. Метод командного ядра.Метод диагностирования на уровне логических схем. Метод микродиагностирования.Метод эталонных состояний. Метод диагностирования, ориентированный на проверку сменных блоков. Метод диагностирования с помощью схем встроенного контроля.Метод диагностирования с помощью само проверяемого дублирования.Метод диагностирования по регистрации состояния. Сервисные процессоры.

30.Особенности эксплуатационного обслуживания микропроцессорных систем и персональных компьютеров.

Сигнатурный анализ. Особенности организации эксплуатационного обслуживания персональных компьютеров. Диалоговые системы диагностирования неисправностей в ПК. Вирусы и их типы. Поиск и устранение вирусов.

31.Методы проектирования тестов.

Вероятностное тестирование.Детерминированные методы генерации тестов для для логических схем. описанных на вентильном и функциональном уровне.Понятие о тестируемом проектировании аппаратуры ЭВМ. Модификация схем для раздельного тестирования комбинационных схем и триггеров. Модификация схем для само тестирования.

32.Защита, сохранение и восстановление БД.Проблемы эксплуатации БД.

Программные методы защита БД от ошибок.Восстановление БД при аварийных ситуациях. Методы защиты информации от несанкционированного доступа.

33.Диагностирование периферийных устройства. Диагностирование УПУ/ПУ с помощью процессора, тестеров, имитаторов каналов, и встроенных средств.

Диагностирование средств теле обработки данных; мультиплексора передачи данных и канала передачи данных.

34.Принципы автоматизации профилактических испытаний. Типы профилактических испытаний. Программные средства профилактических испытаний.

Автоматизация профилактических испытаний с изменением напряжений вторичных источников питания.Автоматическое накопление информации об ошибках, её обработка и использование.

35.Методы повышения эксплуатационной надёжности систем электропитания ЭВМ. Основные проблемы Эксплуатации систем электропитания ЭВМ. Защита ЭВМ от возмущений в системе электропитания.Защита ЭВМ от длительных перерывов электропитания

36.Измерительные приборы.Аппаратурные измерительные мониторы. Микропрограммные и программные измерительные мониторы. Одноконтактный логический пробник.Много контактный логический пробник. Логический компаратор.Логический импульсный генератор. Измерители тока. Осциллографы. Логические анализаторы. Стенды проверки ТЭЗ.

37.Процессы эксплуатационного обслуживания ЭВМ.Структура процессов обслуживания ЭВМ. Комплексное централизованное обслуживание ЭВМ.

Оборудование помещений для ЭВМ. ТБ при работе с ЭВМ. Обеспечение пожарной безопасности вычислительных центров. Процессы планово - профилактического обслуживания. Ведение журнала эксплуатации ЭВМ.

Эксплуатационная документация. Особенности эксплуатации ОС. Обслуживание носителей данных.

38.Заключение. Значение системного подхода при разработке концепции и аппаратно программных средств обслуживания ЭВМ. Современные тенденции развития технологии эксплуатационного обслуживания ВТ; диалоговые системы поддержки обслуживания, дистанционное эксплуатационное обслуживание, интеллектуализация средств диагностирования ЭВМ на основе использования диагностических экспертных систем.