Эксплуатация средств вычислительной техники
J FVARIABLE 700*FN$SNORM+3500FIX FVARIABLE 5*FN$SNORM+80
*
* MODEL SEGMENT 1
*
1 GENERATE ,,,1
2 AGAIN SEIZE MAC
3 ADVANCE V1
4 RELEASE MAC
5 ADVANCE 40
6 SPLIT 1,FETCH
7 SEIZE FIXER
8 ADVANCE V#FIX
9 RELEASE FIXER
10 SAVEVALUE 1+,1
11 TERMINATE
12 FETCH TEST G X1,0
13 SAVEVALUE 1-,1
14 ADVANCE 60
15 TRANSFER ,AGAIN
*
* MODEL SEGMENT 2
*
16 GENERATE 90,FN$XPDIS,,,1
17 ADVANCE
18 SEIZE FIXER
19 ADVANCE 80,40
20 RELEASE FIXER
21 TERMINATE
*
* MODEL SEGMENT 3
*
GENERATE 104000
TERMINATE 1
*
* CONTROL
*
TART 1
RMULT 121,,17
CLEAR
INITAL X1.1
TART 1
RMULT 121,,17
CLEAR
INITAL X1.2
START
END
Описание программы
Первый транзакт сразу занимает прибор MAC посредством входа в прибор SEIZ (2) Первой сохраняемой величиной является 0,т.к.ЗИП пуст. Ограничения на запасные ТЭЗы имитируются в блоке TEST (12)
Во втором сегменте в 17 блоке ADVANCE нет операндов. Он просто позволяет планировать поступление следующего транзакта.
Результаты
Результаты представлены в Табл.2.
Таблица 2
Число запасн.ТЭЗов | Нагрузка ЭВМ | Нагрузка ремонтн. |
1 | 9,705 | 0,880 |
2 | 0,912 | 0,882 |
3 | 0,958 | 0,9887 |
Если в системе имеется всего один запасной ТЭЗ, то коэффициент использования составит 70:При увеличении числа ТЭЗов эта величина соответственно увеличивается , и составляет 91 и 96 процентов..
Исследование модели обслуживания ЭВМ с комбинированным восстановлением после отказов различных ТЭЗов
В предыдущей работе было принято, что все типы ТЭЗов входящих в ЭВМ имеют лдинаковые параметры l и m. В этой работе будем считать, чтоТЭЗы имеют различные параметры, т.е. значения l и m у них не совпадают. Такое предположение уже значительно ближе к практике т.к. в состав ЭВМ входят разнотипные блоки. Это, например, плата видеоадаптера, контроллер винчестеров и дисководов, наконец и сама "материнская плата", и так далее. Наиболее слабым узлом ЭВМ являются принтеры, которые требуют переодической смены катриджей.
Будем обозначать эти различные блоки-ТЭЗы как А и В. Как ТЭЗ А так и ТЭЗ B подвержены периодическим отказам. В случае отказа А или В ЭВМ останавливается оператором или лаборантом. После этого отказавший ТЭЗ извлекают из ЭВМ, и вместо него устанавливают исправный запасной ТЭЗ. После этого ЭВМ продолжает вновь работу.
Во время эксплуатации ЭВМ время работы ТЭЗов А и В до отказа уменьшается. Примем для А и В следующие параметры (Табл.1.).
Таблица 1
Параметры | ТЭЗ А | ТЭЗ В |
Распределене времени без отказной работы. | Нормальное | Нориальное |
Среднее значение | 359 ч | 450 ч |
Стандартное отклонение | 70 ч | 90 ч |
Время съёиа ТЭЗа из ЭВМ | 4 ч | 4 ч |
Время установки ТЭЗа | 6 ч | 6 ч |
Время необходимое на ремонт: | ||
Распределение | Нормальное | См.Табл.2 |
Среднее значение | 8 ч | |
Отклонение | 0,5 ч |
Распределение времени ремонта ТЭЗа В получено эксперимеентально, и представлено в Табл.2*
Таблица 2
Время ремонта,ч | Суммарная частота | Время ремонта ч | Суммарная частота |
Менее 5 | 0,00 | 8 | 0,83 |
6 | 0,22 | 9 | 1,00 |
7 | 0,57 |
Условия работы ЭВМ считаем идентичными ранее описанным.
Для ремонта используется один ремонтник, который ремонтирует ТЭЗы A и B в порядке их поступления. Кроме того, он продолжает ремонтировать неисправные блоки, поступившие от других ЭВМ и имеющие более высокий приоритет, чем у блоков А и В.
В работе надо построить GPSS модель для систиемы "ТЭЗ - ЭВМ", и использовать эту модель для нахождения коэффициента нагрузки ЭВМ как функции числа запасных ТЭЗов А и В в системе. Рассмотреть систему для комбинаций, при которых в ЗИПе имеется 0, 1 или 2 ТЭЗа каждого вида. Для каждой из систем выполнить прогон, моделирующий работу системы в течении 5 лет (это 280 40-часовых недель).
Метод построения модели.
Сегмент "ЭВИ ТЭЗ". Транзактом имитируется начало работы ЭВМ, представленную прибором. В начальный момент времени работы предполагается, что оба блока исправны. Когда транзакт, имитирующий включение ЭВМ входит в модель, он делает выборки из распределений времени работы ТЭЗов А и В, записывая полученные величины в первый и второй параметры.
Второй и третий сегменты идентичны предйдущей работе.
Рассмотрим таблицу распределений (Табл.3.).
операторы GPSS | Назначение |
Транзакты: | |
1-вый сегмент | Управление работой ЭВМ |
Р1 - оставщееся время работы А | |
Р2 - оставщееся время работы ВА | |
Р3 - наименьшая величина между А и В | |
2-рой сегмент | ТЭЗ на замену |
3-тий сегмент | Транзакт-тайиер на 5 лет |
Приборы: | |
MAC | ЭВМ, нагрузка которой подлежит определению |
FIXER | Ремонтник |
Функции: | |
BFIX | Ф-ия описываюшая распределение времени ремонта ТЭЗа В |
FLIP | Ф-ия, значением которой является номер ТЭЗа не отмеченного в Р3 |
POINT | Ф-ия распределения времени ремонта ТЭЗов А или В |
SNORV | Нормированная норм. Ф-ия распр. |
XPDIS | Экспоненциальная ф.ия распределения |
Сохланяемые величины: | |
1,2 | Счётчики запасных ТЭЗов А и В |
AF{X | Переменная, описыв. норм.распр. время ремонта ТЭЗа А |
Программа на языке GPSS
RMULT 121,,17
BFIX FUNCTION RN2,C5
0,50/.22,60/.57,70/.83,80/1,90
FLIP FUNCTION P3,L2
1,2/2,1
POINT FUNCTION P3,M
1,V$AFIX/2,FN$BFIX
SNORM FUNCTION RN1,C25
0,-5/.00003,-4/.00135,-3/.00621,-2.5/.02275,-2/
.34458,-0.4/.42074,-0.2/.5,0/.57926,.2/.65547,.4
.72575,.6/.78814,.8/.84134,1/.88493,1.2/.93319,1.5
.97725,2/.99379,2.5/.99865,,5/.99997,4/1,1.5,
XPDIS FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2
,75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81
.95,2.99/.96,3.2/.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2
.999,7/.9998,8
1 FVARIABLE 700*FN$SNORM+3500
2 FVARIABLE 900*FN$SNORM+4500
AFIX FVARIABLE 5*FN$SNORM+80
*
* MODEL SEGMENT 1
*
1 GENERATE ,,,1
2 ASSIGN 1,V1
3 ASSIGN 2,V2
4 AGAIN SELECT MIN 3,1,2,,,P
5 SEIZE MAC
6 ADVANCE P*3
7 RELEASE MAC
8 ASSIGN FN$FLIP-,P*3
9 ADVANCE 40
10 SPLIT 1,FETCH
11 SEIZE FIXER
12 ADVANCE FN$POINT
14 RELEASE FIXER
14 SAVEVALUE P3+,1
15 TERMINATE
16 FETCH TEST G X*3,0
17 SAVEVALUE P3-,1
18 ADVANCE 60
19 ASSIGN P3,V*3
20 TRANSFER ,AGAIN
* MODEL SEGMENT 2
*
21 GENERATE 90,FN$XPDIS,,,1
22 ADVANCE
23 SEIZE FIXER
24 ADVANCE 80,40
25 RELEASE FIXER
26 TERMINATE
*
* MODEL SEGMENT 3
*
27 GENERATE 104000
28 TERMINATE 1
*
* CONTROL
*
START 1
RMULT 121,,17
CLEAR
INITAL X2.1
START 1
RMULT 121,,17
CLEAR
INITAL X2.2
START 1
RMULT 121,,17
CLEAR
INITAL X1.1
START 1
RMULT 121,,17
CLEAR
INITAL X1,1/X2,1
START 1
RMULT 121,,17
CLEAR
INITAL X1,1/X2,2
START 1
RMULT 121,,17
CLEAR
INITAL X1,2
START 1
RMULT 121,,17
CLEAR
INITAL X1,2/X2,1
START 1
RMULT 121,,17
CLEAR
INITAL X1,2/X2,2
START 1
END
Описанме программы
Комбинации запасных ТЭЗов рассматриваются в последовательность:
0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
Управляющие блоки @RMULT-CLEAR-INITIAL-START" позволяют вводить и обнулять сохраняемые величины для числа имеющихся ТЭЗов. Для комбинации 0,0 не требуется оператор INITIAL&
Результаты
В табл.4 приведены результаты моделирования.
Таблица 4
Число запасных ТЭЗов A | Чисдо запасных ТЭЗов В в системе | ||
всистеме | 0 | 1 | 2 |
0 | 0,609 | 0,686 | 0,742 |
1 | 0,755 | 0,864 | 0,908 |
2 | 0,714 | 0,906 | 0,945 |
Первая строка таблифы, соответствуюшая нулевому числу ТЭЗов А, показывает, как растйт нагрузкаЭВМ по мере возрастания запасных дета- лей ТЭЗа В в последовательности 0,1,2.
Для сравнения приведем в Табл.5 результаты. полученные в предыдущей работе.
Таблица 5
-
Число запасн.ТЭЗов Нагрузка ЭВМ Нагрузка ремонтн. 1 9,705 0,880 2 0,912 0,882 3 0,958 0,9887
Отметим, что при отсутствии запасных ТЭЗов А и двух запасных ТЭЗах В. нагрузка, равная 74,2 процента (речь идет о Табл.4.стр.1), превышает нагрузку в 70,5, полученную в предыдущем примере. Это противоречит ожидаемому результату. Результаты полученные для случая А=1 и 2 и для В=0 являются сомнительными.
Нагрузка в 90,8% для А=1 и В-2 меньше чем 91,2% для предыдущей работы(Табл.5, строка 2).Существуют и ещё неувязки.
Модель для эмитации производственной деятельности ВЦ
Рассмотрим следующий вопрос: "Разработать модель для имитации производственной деятельно ВЦ при планово- предупредительном обслуживании эксплуатируемого парка ЭВМ. По полученной модели оценить распределение случайной переменной "число машин, находящихся на внеплановом ремонте".
Рассматриваемый ВЦ имеет в своем составе парк ЭВМ , обеспечивающий среднюю производительность. и базирующийся на ЭВМ IBM PC с ЦП типа 386SX и 386DX. Кроме: этого на ВЦ используются в качестве сетевых серверов машины типа 486DX и Pentium, поддерживающие локальные сети, в которых осуществляется сложная цифровая обработка больших цифровых массивов информации , кроме этого, решаются задачи разработки цветных изображений.
На ВЦ принято планово-профилактическое обслуживание. ВЦ с небольшим парком ЭВМ и поэтому ремонтом ЭВМ занимается всего один радио-механик ( в терминах СМО - ремонтник). Это означает: что одновременно можно выполнять обслуживание только одной ЭВМ. Все ЭВМ должны регулярно проходить профилактический осмотра. Число эвм подвергающееся ежедневному осмотру согласно графика, распределено равнлмерно и составляет от 2 до 6. Время, необходимое для осмотра и обслуживания каждой ЭВМ примерно распределено в интервале от 1,5 до 2,5 ч. За это время