Создание новых лекарственных веществ

того, что бы выбирать интересующий атом;

- построенную модель сохраняют, устанавливая курсор на пункт меню “File”, затем “Export”, устанавливают на “Molfile” и сохраняют в директорию Isis Draw.

Последовательность действия:

Запуск программы PASS.

2. Исследование биологической активности:

- мышь устанавливают на пункт меню “File”, затем “Open Base” выбираем “passdemo.SAR” и нажимаем “Открыть”;

- устанавливают указатель курсора на клавишу “Predict and Save Prediction as Text files”, тип файлов выбираем “mol”, нажимаем “Открыть”, затем сохраняем как “txt”, открываем сохраненный файл и изучаем биологическую активность.

3. Результаты эксперимента и их обсуждение


3.1 Разработка новых молекулярных структур на основе дикаина


Несмотря на достижения современной анестезии, продолжаются поиски менее опасных средств для наркоза, разработка различных вариантов многокомпонентного избирательного наркоза, позволяющего значительно снизить дозы используемых средств, уменьшить их токсичность и побочные отрицательные влияния [19]. В последнее время методы компьютерного моделирования все более входят в практику технологии создания новых синтетических лекарственных веществ [9]. Этот подход позволяет установить стехиометрические особенности молекулы лекарственного соединения, измерить расстояние между отдельными атомами, определить потенциал биоактивности, комплементарность взаимодействия с биорецепторным участком. Получаемые таким образом данные позволяют более целенаправленно проводить синтезы биоактивных молекул с заданными на молекулярном уровне параметрами, что значительно экономит время, материалы и силы при аналоговом поиске лекарственных веществ.

Дикаин применяется для поверхностной анестезии. Под влиянием местных анестетиков в окончании нерва и в самом нерве прекращается электрохимический процесс, осуществляющий передвижение ионов через мембрану и распространение нервных импульсов. Область окончания чувствительных нервов находится под регулирующим влиянием системы медиаторных рецепторов, синергентное взаимодействие, которых обеспечивает более эффективное развитие торможения. Известно, что в присутствии противогистаминных средств (димедрол), м-холиноблокаторов (атропин) и адреналина усиливается местноанестезирующий эффект [20].

Дикаин относится к классу сложных эфиров п-аминобензойной кислоты (β-диметиламиноэтиловый эфир п-бутиламинобеизойной кислоты гидрохлорид) [8].


Анестезиофорной группой является диалкиламиноацетанилид. Расстояние между и атомами определяет двухточечный контакт молекулы дикаина с рецептором через диполь-дипольное и ионное взаимодействие. В структуру молекулы дикаина входит фрагмент биогенного вещества коламина (2-аминоэтанола), производные которого оказывают противогистаминный эффект. Дикаин активнее своих аналогов (анестезина и новокаина), но и токсичнее их в несколько раз. Его используют главным образом в глазной и оториноларингологической практике.

Нами предложены варианты новых структур для компьютерного дизайна молекулы дикаина с целью снижения его токсичности с сохранением или даже усилением анестезирующих свойств.

Введение в бензольное кольцо «облагораживающей» карбоксильной группы и замена диметиламиногруппы на более фармакоактивную диэтиланиногруппу позволит снизить токсичность соединения, облегчить гидролиз сложноэфирной связи с высвобождением антигистаминного фрагмента - диэтиламиноэтанола.



Алифатический радикал н-бутил в структуре дикаина усиливает фармакологический эффект. При замене его на адреналиновый фрагмент ожидается получить более яркое анестезирующее действие.


К настоящему времени известно, что биологические системы не делают различия между плоскими кольцами, поэтому при замене ароматической основы н-аминобензойной кислоты на никотиновую (или изоникотиновую) кислоту изменяется полярность молекулы, облегчается задача введения различных заместителей в ароматическое кольцо. К тому же, аминопроизводные никотиновой кислоты (кордиамин) являются стимуляторами центральной нервной системы.



Один из наиболее эффективных анестетиков, промедол, содержит в структуре вместо ароматического пиридинового кольца пиперидиновое, что является предпосылкой для модификации молекулы дикаина.


3.2 Результаты исследований с помощью программы HyperChem


Таблица 1

Длина связи или валентный угол Данные ММ расчёта Данные MNDO расчёта Справочные величины

С1-С2

С2-С3

С3-С4

С4-N5

N5-C6

C6-C7

C7-C9

C9-C11

C10-C11

C8-C10

C6-C8

C11-C12

C12-O13

C12-O14

O14-C15

C15-C16

C16-N17

N17-C19

N17-C18

C1-C2-C3

С2-С3-С4

C3-C4-N5

N5-C6-C8

N5-C6-C7

C6-C7-C9

C7-C9-C11

C9-C11-C10

C11-C10-C8

C10-C8-C6

C8-C6-C7

C9-C11-C12

C10-C11-C12

C12-O14-C15

O14-C15-C16

C15-C16-N17

C16-N17-C18

C16-N17-C19

C18-N17-C19

1,53442

1,53705

1,53626

1,44712

1,35045

1,34373

1,34335

1,34525

1,3446

1,34261

1,34354

1,36294

1,21202

1,35065

1,40995

1.53635

1,45672

1,45174

1,45291

111,792

113,518

109,67

118,219

123,605

120,397

120,124

119,658

119,913

120,666

119,242

119,948

122,115

118,556

107,759

113,916

111,47

113,282

111,148

1,53158

1,54128

1,54862

1,46777

1,41076

1,41935

1,40351

1,41482

1,41571

1,40009

1,42528

1,49637

1,22988

1,36302

1,41167

1,56222

1,47112

1,46359

1,46386

114,547

113,518

111,073

118,219

123,605

120,589

121,461

117,898

121,164

120,879

117,974

119,948

122,115

124,819

107,759

109,436

116,806

117,015

116,056

1,534

1,536

1,539

1,456

1,411

1,393

1,355

1,381

1,392

1,356

1,352

1,383

1,218

1,386

1,382

1,559

1,493

1,432

1,451

113,125

113,529

110,053

118,953

123,983

120,159

120,956

118,241

120,971

120,264

118,325

119,948

122,233

121,179

107,563

110,563

115,963

115,912

116,023


Сравнивая полученные результаты, оба метода имеют небольшие отклонения по сравнению со стандартными данными.

Расположение молекулы немного изменяется в зависимости от применяемого метода.

Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.

Изменение потенциальной энергии связи C16-N17.

Исследуемая связь между атомами C16-N17. Задаём начальные величины начальная длина связи 0,971; конечная длина связи 2,971; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи C16-N17 от величины растяжения.

Изменение потенциальной энергии углового напряжения C3-C4-C5.

Исследуем угол между атомами C3-C4-C5. Задаём начальные величины начальный угол 80; конечный 140; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.


Таблица 2

Длина связи или валентный угол Данные ММ расчёта Данные MNDO расчёта Справочные величины

C1-C2

C2-C3

C3-C4

C4-N5

N5-C6

C6-C7

C7-C9

C9-C10

C10-C11

C11-C8

C6-C8

C7-C12

C12-O13

C12-O14

C10-C15

C15-O16

C15-O17

O17-C18

C18-C19

C19-N20

N20-C23

C23-C24

N20-C21

C21-C22

C1-C2-C3

C2-C3-C4

C3-C4-N5

C4-N5-C6

N5-C6-C7

N5-C6-C8

C6-C7-C12

C7-C12-O13

C7-C12-O14

C6-C7-C9

C7-C9-C10

C9-C10-C11

C10-C11-C8

C6-C8-C11

C8-C6-C7

C11-C10-C15

C9-C10-C15

C10-C15-O16

C10-C15-O17

O16-C15-O17

C15-O17-C18

O17-C18-C19

C18-C19-N20

C19-N20-C21

C19-N20-C23

N20-C23-C24

N20-C21-C22

1,53446

1,53687

1,53769

1,46773

1,35455

1,34989

1,34842

1,3461

1,34288

1,34136

1,34515

1,36573

1,20944

1,33807

1,36377

1,21204

1,35143

1,41104

1,53791

1,46268

1,45983

1,53447

1,46076

1,53704

111,785

112,138

110,841

116,92

124,692

115,847

123,329

123,901

121,905

119,209

120,947

119,665

119,499

121,203

119,456

119,282

121,051

119,494

121,218

119,22

118,218

108,252

114,762

111,29

111,699

116,769

113,058

1,53154

1,54091

1,5495

1,47515

1,43364

1,423

1,41348

1,41233

1,41258

1,40248

1,41671

1,50204

1,22891

1,35818

1,50134

1,22774

1,35955

1,41312

1,5631

1,47233

1,47481

1,53447

1,47478

1,53801

111,785

113,622

110,841

119,144

118,391

122,522

121,784

126,174

144,416

119,516

121,22

118,829

120,542

120,848

118,99

121,044

120,117

125,793

113,418

120,418

125,334

107,378

110,057

116,349

116,243

112,593

112,593

1,532

1,539

1,544

1,483

1,423

1,312

1,342

1,401

1,362

1,341

1,395

1,502

1,211

1,348

1,551

1,221

1,355

1,413

1,531

1,452

1,453

1,534

1,460

1,538

111,785

112,953

110,841

117,526

117,318

117,286

122,463

123,901

144,411

119,291

121,231

118,973

119,513

121,203

119,361

120,964

121,051

120,169

119,432

120,111

119,213

107,314

112,953

113,561

114,246

111,548

112,987

Сравнивая полученные результаты, оба метода имеют небольшие отклонения.

Расположение молекулы немного изменяется в зависимости от применяемого метода.

Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.

Изменение потенциальной энергии связи C6-С11.

Исследуемая связь между атомами C6-С11. Задаём начальные величины начальная длина связи 1,037; конечная длина связи 3,037; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи C6-C11 от величины растяжения.

Изменение потенциальной энергии углового напряжения C6-C11-O14.

Исследуем угол между атомами C6-C11-O14. Задаём начальные величины начальный угол 90; конечный 150; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.

Объектом является химическое соединение.


Таблица 3

Длина связи или валентный угол Данные ММ расчёта Данные MNDO расчёта Справочные величины

O1-C2

C2-C3

C3-C4

C4-C5

C5-C7

C6-C7

C2-C6

C3-O8

C5-C9

C9-C10

C10-N11

N11-C12

N11-C13

C13-C14

C14-C15

C15-C16

C16-C18

C17-C18

C13-C17

C16-C19

C19-C20

C19-O21

O21-C22

C22-C23

C23-N24

N24-C25

N24-C26

O1-C2-C6

O2-C2-C3

C2-C3-C4

C3-C4-C5

C4-C5-C7

C5-C7-C6

C2-C6-C7

C3-C2-C6

O8-C3-C2

O8-C3-C4

C4-C5-C9

C7-C5-C9

C5-C9-C10

C9-C10-N11

C10-N11-C12

C13-N11-C12

C14-C13-N11

C17-C13-N11

C13-C14-C15

C14-C15-C19

C15-C16-C18

C16-C18-C17

C13-C17-C18

C17-C13-C14

C19-C16-C18

C19-C16-C15

O20-C19-C16

O21-C19-C16

O20-C19-O21

C19-O21-C22

O21-C22-C23

C22-C23-N24

C23-N24-C25

C23-N24-C26

C25-N24-C26

1,36051

1,34612

1,34441

1,3441

1,34399

1,34099

1,34297

1,36079

1,51602

1,54091

1,46417

1,45765

1,35257

1,3425

1,34235

1,34536

1,34524

1,34278

1,34206

1,36228

1,21202

1,35004

1,4099

1,53786

1,45675

1,45323

1,45163

120,802

120,483

119,222

122,579

117,432

120,669

121,368

118,714

120,184

120,594

121,181

121,385

115,402

114,762

123,704

116,621

120,198

119,72

120,071

119,877

120,004

119,927

120,013

120,082

119,383

120,612

119,581

120,826

119,469

119,174

110,679

113,688

111,433

113,311

111,143

1,35748

1,43712

1,4148

1,41582

1,41064

1,4048

1,41425

1,35924

1,51423

1,55179

1,47428

1,47004

1,43737

1,41646

1,40524

1,41186

1,41199

1,4048

1,41809

1,501

1,22707

1,36061

1,41166

1,5624

1,47048

1,46449

1,46417

123,264

118,062

119,488

121,583

118,032

121,572

120,637

118,674

117,63

122,882

121

120,916

117,262

113,931

116,04

114,642

123,731

117,39

120,376

120,696

118,949

120,676

120,373

118,878

120,928

120,123

126,438

112,643

120,919

125,616

107,249

109,754

116,591

116,835

115,996

1,359

1,381

1,368

1,388

1,347

1,358

1,413

1,362

1,514

1,551

1,469

1,462

1,395

1,561

1,395

1,354

1,456

1,400

1,346

1,447

1,210

1,369

1,469

1,537

1,475

1,462

1,495

122,645

119,472

119,265

121,583

117,463

120,873

121,145

118,714

118,139

121,246

121,012

121,213

114,786

113,746

122,612

115,621

120,198

118,365

120,376

120,519

119,789

120,581

120,373

120,566

120,491

120,573

122,469

117,721

120,651

123,125

108,452

110,956

117,854

114,651

113,786


Сравнивая полученные результаты, оба метода имеют небольшие отклонения.

Расположение молекулы немного изменяется в зависимости от применяемого метода.

Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.

Изменение потенциальной энергии связи N11-С13.

Исследуемая связь между атомами N11-С13. Задаём начальные величины начальная длина связи 2,36; конечная длина связи 5,666; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи N11-С13 от величины растяжения.

Изменение потенциальной энергии углового напряжения C19-О21-С22.

Исследуем угол между атомами C19-О21-С22. Задаём начальные величины начальный угол 70; конечный 130; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.

Оптимизация геометрии и расчёт параметров молекулы методом молекулярной механики (ММ+ и MNDO метод).


Таблица 4

Длина связи или валентный угол Данные ММ расчёта Данные MNDO расчёта Справочные величины

С1-С2

С2-С3

С3-С4

С4-N5

N5-C6

C6-C7

C7-C8

C41-C8

C9-C41

C5-C9

C7-C10

C10-O11

C10-O12

O12-C13

C13-C14

C14-N15

N15-C16

N15-C17

C1-C1-C3

C2-C3-C4

C3-C4-N5

C4-N5-C6

C4-N5-C9

N5-C6-C7

C6-C7-C8

C7-C8-C41

C8-C41-C9

C41-C9-N5

C9-N5-C6

C6-C7-C10

C8-C7-C10

C7-C10-C11

C7-C10-O12

C10-O12-O13

O12-C13-C14

C13-C14-N15

C14-N15-C16

C14-N15-C17

C16-N15-C17

1,53455

1,53762

1,5369

1,468

1,45685

1,5104

1,34294

1,34042

1,33896

1,35217

1,36168

1,21147

1,34976

1,41025

1,53651

1,45706

1,45297

1,4518

111,892

111,685

111,781

122,06

119,167

114,299

120,314

120,526

122,338

123,23

118,447

121,465

118,218

117,423

122,29

118,494

107,986

113,797

111,518

113,334

111,185

1,53153

1,54118

1,55042

1,47213

1,4767

1,51705

1,36463

1,44632

1,36782

1,39475

1,49687

1,22888

1,36285

1,41128

1,56218

1,47138

1,46379

1,46434

114,534

113,462

113,494

118,349

119,969

113,836

121,488

120,452

120,512

121,692

121,63

116,046

122,464

126,415

113,517

125,248

107,536

109,6

116,738

116,78

115,933

1,532

1,538

1,542

1,468

1,463

1,517

1,352

1,395

1,338

1,394

1,419

1,226

1,339

1,411

1,541

1,468

1,462

1,468

113,589

113,452

113,642

119,486

119,165

113,863

121,488

120,526

121,514

122,945

119,449

120,064

118,218

126,435

122,651

125,984

107,892

110,674

115,465

115,639

113,746


Сравнивая полученные результаты, оба метода имеют небольшие отклонения.

Расположение молекулы немного изменяется в зависимости от применяемого метода.

Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.

Изменение потенциальной энергии связи С4–N5.

Исследуемая связь между атомами С4–N5. Задаём начальные величины начальная длина связи 0,972; конечная длина связи 2,972; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи С4–N5 от величины растяжения.

Изменение потенциальной энергии углового напряжения C2-C3-С4.

Исследуем угол между атомами C2-C3-С4. Задаём начальные величины начальный угол 50; конечный 140; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.

Оптимизация геометрии и расчёт параметров молекулы методом молекулярной механики (ММ+ и MNDO метод).

- Проведение оптимизации молекулы.

ММ+ метод.


Таблица 5

Длина связи или валентный угол Данные ММ расчёта Данные MNDO расчёта Справочные величины

С1-С2

С2-С3

С3-С4

С4-N5

N5-C6

C6-C8

C8-C10

C9-C10

C7-C9

N5-C7

C10-C11

C11-O12

C11-O13

O13-C14

C14-C15

C15-N16

N16-C17

N16-C18

C1-C2-C3

C2-C3-C4

C3-C4-N5

C4-N5-C7

C4-N5-C6

N5-C7-C9

C7-C9-C10

C9-C10-C8

C6-C8-C10

C8-C6-N5

C6-N5-C7

C10-C11-O12

C9-C10-C11

C8-C10-C11

C10-C11-O13

O12-C11-O13

C11-O13-C14

C13-C14-C15

C14-C15-N16

C15-N16-C17

C15-N16-C18

1,53461

1,53838

1,53856

1,45536

1,45232

1,53586

1,53611

1,53558

1,536

1,4525

1,52029

1,20871

1,34376

1,40919

1,53584

1,45663

1,45283

1,45193

111,827

111,685

116,445

113,912

113,888

111,468

110,753

108,473

112,918

111,794

116,304

127,3

110,877

112,884

112,782

119,917

125,512

107,339

109,614

116,591

116,809

1,53147

1,54129

1,55152

1,47019

1,46727

1,54676

1,54834

1,54919

1,5454

1,46687

1,54228

1,22757

1,36181

1,41133

1,56262

1,47096

1,46422

1,4643

114,597

113,519

116,865

117,555

117,81

111,826

113,034

111,009

112,918

111,794

116,304

127,3

110,877

112,884

112,782

119,917

125,512

107,339

109,614

116,591

116,809

1,533

1,539

1,542

1,467

1,467

1,539

1,539

1,542

1,542

1,468

1,534

1,213

1,352

1,412

1,556

1,472

1,468

1,464

113,654

113,512

116,865

116,526

116,956

111,429

111,485

111,006

112,918

111,783

116,304

127,3

110,563

112,853

112,782

119,456

125,654

107,339

110,369

115,654

116,809


Сравнивая полученные результаты, оба метода имеют небольшие отклонения.

Расположение молекулы немного изменяется в зависимости от применяемого метода.

Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.

Изменение потенциальной энергии связи С4–N5.

Исследуемая связь между атомами С4–N5. Задаём начальные величины начальная длина связи 0,97; конечная длина связи 2,97; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи С4–N5 от величины растяжения.

Изменение потенциальной энергии углового напряжения C2-C3-С4.

Исследуем угол между атомами C2-C3-С4. Задаём начальные величины начальный угол 50; конечный 140; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.


3.3 Исследование биологической активности с помощью программы PASS


В работе выполнено исследование биологической активности всех молекулярных структур с помощью программы PASS согласно методике п.2.2.

Дикаин



Если величина Pa близка к единице, то вещество может оказаться близким аналогом известных препаратов.

Базовые структуры лекарств, обладающие существенной новизной, целесообразно отбирать из массива доступных веществ соединения с Pa<0.7. Риск получения отрицательного результата в эксперименте тем больше, чем меньше величина Pa, однако и новизна такой структуры (при подтверждении прогноза в эксперименте) будет более высокой [12]. Pa Pi:

0.603 0.023 спазмолитик,

0.511 0.048 сосудорасширяющее средство,

0.405 0.015 антагонист кальциевых каналов,

0.350 0.107 антигипертензивный,

0.323 0.166 токсичный,

0.114 0.098 агонист β – адренорецепторов,

0.219 0.214 тератоген,

0.092 0.091 антагонист β – адренорецепторов.

1. Структура 1 (карбоксиструктура).


Pa Pi:


0.591 0.025 спазмолитик,

0.367 0.095 сосудорасширяющее средство,

0.264 0.051 антагонист кальциевых каналов,

0.331 0.160 токсичный,

0.301 0.142 антигипертензивный,

0.211 0.144 диуретик,

0.233 0.195 тератоген,

0.113 0.101 агонист β – адренорецепторов,

0.092 0.090 антагонист β – адренорецепторов.

2. Структура 2 (адреноструктура).


Pa Pi:

0.620 0.021 спазмолитик,

0.472 0.059 сосудорасширяющее средство,

0.362 0.020 антагонист кальциевых каналов,

0.218 0.041 агонист дофамина,

0.128 0.020 агонист Д2 дофамина,

0.291 0.188 токсичный,

0.144 0.041 агонист β1 – адренорецепторов,

0.139 0.043 агонист β – адренорецепторов,

0.243 0.182 тератоген,

0.237 0.211 антигипертензивный,

0.133 0.119 агонист α – адренорецепторов.

3. Структура 3 (никотиноструктура).



Pa Pi:

0.683 0.017 сосудорасширяющее средство,

0.548 0.031 спазмолитик,

0.326 0.026 антагонист кальциевых каналов,

0.364 0.098 антигипертензивный,

0.171 0.066 агонист дофамина.

4. Структура 4 (пиперидиноструктура).

Pa Pi:

0.680 0.015 спазмолитик,

0.537 0.042 сосудорасширяющее средство,

0.411 0.014 антагонист кальциевых каналов,

0.402 0.078 антигипертензивный,

0.233 0.051 антагонист α1 – адренорецепторов,

0.253 0.075 агонист α – адренорецепторов

0.216 0.081 антагонист адреналина.

После исследования биологической активности ряда веществ можно сделать вывод, что все структуры обладают новизной. Есть большая вероятность, что они будут обладать спазмолитической, сосудорасширяющей активностью и являются антагонистами кальциевых каналов.

Суммарно характеристики биологической активности всех молекулярных структур предложены в таблице 6.


Таблица 6

Характерис-тика фармако-логической активности Основ-ная струк-тура Модифицированные структуры

Дикаин

Структура 1

Карбокси-структура

Структура 2

Адрено-структура

Структура 3

Никотино-структура

Структура 4

Пиперидиноструктура

1. Спазмолитик 0,603 0,023 0,591 0,025 0,620 0,021 0,683 0,017 0,680 0,015
2. Сосудорасши-ряющее средство 0,511 0,048 0,367 0,095 0,472 0,059 0,548 0,031 0,537 0,042
3. Антагонист кальциевых каналов 0,405 0,015 0,264 0,051 0,362 0,020 0,326 0,026 0,411 0,014
4. Антигипер-тензивный 0,350 0,107 0,301 0,142 0,237 0,211 0,364 0,098 0,402 0,078
5. Агонист β-адренорецепторов 0,114 0,098 0,113 0,101 0,139 0,043

6. Токсичный 0,323 0,166 0,331 0,160 0,291 0,188

7. Тератоген 0,219 0,214 0,233 0,195 0,243 0,182

8. Антагонист β-адрено-рецепторов 0,092 0,091 0,092 0,09


9. Диуретик
0,211 0,144


10. агонист -адрено-рецепторов



0,144 0,041

11. Агонист α-адрено-рецепторов

0,133 0,119
0,253 0,075

12. Антагонист -адрено-рецепторов





0,233 0,051

Краткое описание позиций проявленной фармакологической активности.

1. Спазмолитик.

Лекарственное средство, понижающее тонус и двигательную активность гладких мышц; применяют для предупреждения или устранения спазмов гладкомышечных органов.

По механизму действия спазмолитические средства делят на миотропные и нейротропные. Миотропные спазмолитические средства снижают тонус гладкомышечных органов путем прямого влияния на биохимические процессы в гладкомышечных клетках. Нейротропные спазмолитические средства оказывают спазмолитический эффект путем нарушения передачи нервных импульсов в вегетативных ганглиях или в области окончаний вегетативных нервов, стимулирующих гладкие мышцы [19].

2. Сосудорасширяющее средство (α- и β-адреноблокаторы).

Лекарственное средство, вызывающее расширение кровеносных сосудов.

По принципу действия различают нейротропные, миотропные сосудорасширяющие средства, антагонисты кальция и сосудорасширяющие средства, влияющие на гуморальную регуляцию сосудистого тонуса.

К нейротропным сосудорасширяющим средствам относят препараты, влияющие на эффективную иннервацию сосудов [18].

3. Антагонист кальциевых каналов.

Механизм сосудорасширяющего действия препаратов группы антагонистов кальция связывают с блокадой кальциевых каналов, что приводит к затруднению проникновения ионов кальция внутрь клетки и расслаблению гладкой мускулатуры. Из числа антагонистов кальция в медицинской практике широко используется верапамил и нифедипин, которые применяют в основном как антиангинальные средства [18, 20].

4. Антигипертензивный.

Антигипертензивный – свойство вещества, препятствующего повышению гидростатического давления в полости организма, полых органах и сосудах.

Антигипертензивные вещества препятствуют развитию гипертензивного синдрома – симптомокомплекса, обусловленного стабильным или прогрессирующим поведением внутричерепного давления [8].

5. Токсичный.

Токсичность – свойство вещества синтетического и природного происхождения при поступлении в организм в количестве, превышающем меру их фармакологической активности, что выражается в возникновении токсических эффектов разной направленности, интенсивности и продолжительности вплоть до развития отравления [20].

6. Агонист β-адренорецепторов.

Агонист β-адренорецепторов – лекарственное вещество, которое прикрепляясь к β-адренорецептору, индуцирует эффективное конформационное изменение [3].

7. Тератоген.

Тератоген – фактор, вызывающий развитие врожденных пороков [5].

8. Антагонист β–адренорецепторов.

Антагонист β-адренорецепторов – лекарственное вещество, которое прикрепляется к β-адренорецептору, не индуцирует эффективного конфигурационного изменения.

β-адренолитики блокируют β-адренорецепторы, осуществляющие симпатическую иннервацию сердца (возбуждение) и торможение гладких мышц бронхов, желудка, некоторых сосудов, ресничной мышцы, поперечнополосатых мышц, а также регуляцию гликогенолиза и липолиза [7].

9. Диуретик.

Диуретики (мочегонные средства) – лекарственные средства, увеличивающие выделение почками ионов натрия и воды и вызывающие в связи с этим уменьшение содержания жидкости в тканях и серозных полостях организма.

Основным и практически важным эффектом мочегонного средства является увеличение выделения ионов натрия.

Одновременно с выделением натрия мочегонные средства способствуют выделению других ионов [19].

10. Агонист -адренорецепторов.

Агонист -адренорецепторов – вещество, которое посредством прикрепления к рецептору индуцирует эффективное конформационное изменение.

-адренорецепторы опосредуют влияние катехоламинов на сердце, гладкие мышцы желудочно-кишечного тракта и, возможно, липолитический эффект КА [7].

11. Агонист α-адренорецепторов.

Агонист α-адренорецепторов – вещество, которое посредством прикрепления к α-адренорецептору индуцируют эффективное конформационное изменение.

α-адренорецепторы осуществляют возбуждение гладких мышц сосудов, гладких образований кожи, слизистых оболочек, органов брюшной полости, селезенки, сфинктеров желудочно-кишечного тракта и мочевого пузыря, мышцы, расширяющей зрачок и др. Сильное α-адренолитическое действие оказывают производные β-галоидоалкиламина, которые вызывают необратимую блокаду адренореактивных систем [7].

12. Агонист α-адренорецепторов.

Агонист α-адренорецепторов – вещество, которое посредством прикрепления к α-адренорецептору индуцируют эффективное конформационное изменение.

α-адренорецепторы осуществляют возбуждение гладких мышц сосудов, гладких образований кожи, слизистых оболочек, органов брюшной полости, селезенки, сфинктеров желудочно-кишечного тракта и мочевого пузыря, мышцы, расширяющей зрачок и др. Сильное α-адренолитическое действие оказывают производные β-галоидоалкиламина, которые вызывают необратимую блокаду адренореактивных систем [7].

Из таблицы 6 видно, что порог ингибирования практически для всех видов биологической активности незначителен, поэтому в дальнейшем сравнительный анализ фармакоактивности будем проводить по порогу активности . Одновременно приведем значения программы PASS в условные проценты относительно базовой структуры – дикаина, принемая его характеристики за 100 %.

Таблица 7


Дикаин Карбокси-структура Адрено-структура Никотино-структура Пиперидно-структура
1. Спазмолитик 100 (0,603) 98,00 (0,591) 102,82 (0,620) 113,27 (0,693) 112,77 (0,680)
2. Сосудорасширя-ющее 100 (0,511) 71,82 (0,367) 92,37 (0,472) 107,24 (0,548) 105,09 (0,537)
3. Антагонист Ca каналов 100 (0,405) 65,19 (0,264) 89,38 (0,362) 80,49 (0,326) 101,48 (0,411)
4. Антигипертен-зивный 100 (0,350) 86,00 (0,301) 67,71 (0,237) 104,00 (0,364) 114,8 (0,402)
5. Агонист β-адренорецеп-торов 100 (0,114) 99,12 (0,113) 119,30 (0,139)

6. Токсичность 100 (0,323) 102,48 (0,331) 90,09 (0,291)

7. Тератоген 100 (0,219) 106,39 (0,233) 110,96 (0,243)

8. Антагонист β-адренорецеп-торов 100 (0,092) 100 (0,092)


9. Диуретик
(0,211)


10. Агонист -адренорецеп-торов



(0,144)

11 Агонист α-адренорецеп-торов

(0,133)
(0,253)

Антагонист -адренорецеп-торов





(0,233)

Сравнивая характеристики фармакологических структур и их соотношение, можно сделать следующие выводы.

Чем больше показатель спазмолитических свойств, тем больше анестезирующий эффект.

Чем меньше показатель сосудорасширяющего свойства, тем больше анестезирующий эффект.

Чем больше показатель антагонист кальциевых каналов, тем больше анестезирующий эффект.

Чем больше антигипертензивный показатель, тем меньше токсичность.

Чем больше показатель сосудорасширяющего средства, тем меньше токсичность.

Появление диуретических свойств снижает токсичность.

Появление α, β-антагонистов адренорецепторов уменьшает токсичность.

В нашей работе для комплексной оценки анестезирующих и токсических свойств предлагается использовать интегральные показатели.

Расчет интегральных показателей проводили по формуле 1.


;


где -интегральный коэффициент анестезирующей активности. -порог активности каждого i – вида фармакологического действия, влияющего на анестезирующий эффект. -порог активности дикаина по соответствующему виду. n-число видов фармакологического действия, влияющего на анестезирующий эффект.



Для суммарной оценки токсических свойств предложен интегральный показатель токсичности.


;

где -интегральный коэффициент токсичности. -порог активности каждого j-вида фармакологического действия, влияющего на токсичность. -порог активности дикаина по соответствующему фармакологического действия. n-число видов фармакологического действия, влияющего на токсичность.



Таблица 8

Интегральные коэфф-ы Дикаин

Структура1

Карбокси-структура

Структура 2

Адрено-структура

Структура 3

Никотино-структура

Структура 4


Пиперидино-структура

Коэффициент анестези-рующей активности 0,5 0,443 0,419 0,543 0,560
Коэффициент токсичности 0,5 0,486 0,564 - -

Из таблицы видно, что по анестезирующему эффекту исследуемые структуры можно ранжировать в следующий ряд:

Пиперидиноструктура>никотиноструктура>дикаин>

>карбоксиструктура>адреноструктура

Наглядно эффект анестезирующей активности представлен на диаграмме 1.

По токсичности исследуемые структуры располагаются в следующий ряд:

Таким образом, результаты компьютерного дизайна молекулы дикаина с целью снижения токсичности и усиления местноанестезирующего эффекта позволяют исследуемые структуры расположить в следующий ряд:

Никотиноструктура>пиперидиноструктура>адреноструктура>>дикаин>карбоксиструктура

4. Экономическая часть


4.1 Цель и база сравнения


Несмотря на достижения современной анестезии, продолжаются поиски менее опасных средств для наркоза, разработка различных вариантов многокомпонентного избирательного наркоза, позволяющего значительно снизить дозы используемых средств, уменьшить их токсичность и побочные отрицательные влияния.

В последнее время методы компьютерного моделирования все более входят в практику технологии создания новых синтетических лекарственных веществ. Полученные таким образом данные позволяют более целенаправленно проводить синтезы биоактивных молекул с заданными на молекулярном уровне параметрами, что значительно экономит время, материалы и силы при аналоговом поиске лекарственных веществ.


4.2 Проведение работы связано с определенными видами затрат


Затраты на проведение работы включают в себя:

Расчет заработной платы работнику, выполняющему данную работу с окладом 3500 р/мес.

Затраты на электроэнергию с ценой 1 кВт-1,6 р.

Затраты на покупку компьютера и приобретение программы HyperChem.


4.3 Заработная плата рассчитывается на 1 человека


Оклад составляет 3500 р/мес. Работа проводилась 4 месяца. Заработная плата за 4 месяца составляет 3500. 4=14000 р.

Отчисления на социальные нужды:

Пенсионный фонд .

Фонд социального страхования .

Фонд медицинского страхования .

Фонд страхования от несчастных случаев р.

Итого: 5222 р.

Основные производственные фонды

Стоимость компьютера 20000 р.

Стоимость компьютера Hyper Chem 30000 р.

Итого: 50000 р.

Амортизация



4.4 Затраты на электроэнергию


Цена за 1 кВт – 1,6 р.

Затраты на энергоресурсы составили 0,1 кВт/ ч.

Работа на компьютере составили 528 ч.



Смета затрат

Статьи затрат Стоимость, руб
Информационная программа HyperChem 30000
Заработная плата 19222
Амортизация 1920
Затраты на электроэнергию 844,8

ИТОГО

51986

Список литературы


Поройков В.В. Компьютерное предсказание биологической активности веществ: пределы возможного. Химия в России, 1999, № 2, 8-12.

Кнунянц И. Л. Химическая энциклопедия. Издательство “Советская энциклопедия” Москва, 1988.

Кукес В. Г., Стародубцева А. К. Фармакология и фармакотерапия. - М.: ГЭОТАР – МЕД, 2004.

Беликов В. Г. Фармацевтическая химия. – М.: Высшая школа, 1985

Харкевич Д. А. Фармакология, четвертое издание, Москва, 1993.

Солдотенков А. Т., Колядина Н. М., Шендрик И. В. Основы органической химии лекарственных веществ. – М.: МИН, 2003.

Аляутдин Р. Н. Фармакология. – учебник для вузов, Москва, 2004.

Ланса Л., Лейси Ч., Голдман. М. Фармакологический справочник, Москва, 2000 г.

Поройков В.В., Филимонов Д.А. Компьютерный прогноз биологической активности химических соединений как основа для поиска и оптимизации базовых структур новых лекарств. В сб.: Азотистые гетероциклы и алкалоиды. Москва: Иридиум-пресс, 2001, т.1, с.123-129.

Poroikov V.V., Filimonov D.A., Borodina Yu.V., Lagunin A.A., Kos A. Robustness of biological activity spectra predicting by computer program PASS for non-congeneric sets of chemical compounds. J. Chem. Inform. Comput. Sci., 2000, 40 (6), 1349-1355.

Anzali S., Barnickel G., Cezanne B., Krug M., Filimonov D., Poroikov V. Discriminating between drugs and nondrugs by Prediction of Activity Spectra for Substances (PASS). J. Med. Chem., 2001, 4 (15), 2432-2437.

Лагунин А.А., Филимонов Д.А., Поройков В.В. Компьютерный поиск потенциальных антигипертензивных соединений комбинированного действия. Хим.-фарм. журн., 2001, 35 (7), 28-34.

Filimonov D., Poroikov V., Borodina Yu., Gloriozova T. Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J. Chem. Inf. Comput. Sci., 1999, 39 (4), 666-670.

Lagunin A., Stepanchikova A., Filimonov D., Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 2000, 16 (8), 747-748.

Poroikov V., Akimov D., Shabelnikova E., Filimonov D. Top 200 medicines: can new actions be discovered through computer-aided prediction? SAR and QSAR in Environmental Research, 2001, 12 (4), 327-344.

Poroikov V., Filimonov D. Computer-aided prediction of biological activity spectra. Application for finding and optimization of new leads. Rational Approaches to Drug Design, Eds. H.-D. Holtje, W.Sippl, Prous Science, Barcelona, 2001, p.403-407.

Кудрин А. Н. Фармакология, Москва “Медицина”, 1991.

Лоуренс Д. Р., Беннетт П. Н. Браун М. Дж. Фармакология. Издание второе. Москва, 2002.

Кудрин А. Н. Фармакология. – М.: Медицина, 2001.

Лоуренс Д. Р., Беннетт П. Н. Фармакология Том 1. Москва, 1993.