Лантаноиды

разновидностей элемента № 71 некоторый интерес представляет изомер лютеция-176, который может быть использован для определения содержания лютеция в соединениях редкоземельных элементов методом активационного анализа. Получают лютеций-176 (изомер) из природного лютеция в нейтронных потоках ядерных реакторов. Период полураспада изомера во много раз меньше, чем у изотопа 176Lu в основном состоянии; он равен всего 3,71 часа.

Физические свойства

Лантаноиды в виде простых веществ – серебристо – белые металлы (празеодим и неодим слегка желтоватого цвета), тускнеющие во влажном воздухе. Все лантаноиды в основном имеют структуру ГПУ, за исключением европия (объёмно – центрированная кристаллическая решётка), иттербия (гранецентрированная кристаллическая решётка) и самария, который кристаллизуется в ромбоэдрической структуре. Металлы подсемейства церия пластичны, сравнительно мягки, причём их твёрдость возрастает с увеличением атомного номера, за исключением иттербия, который имеет аномально высокую проводимость; она в 3 раза больше, чем у других лантаноидов, которые по этому параметру приближаются к ртути. Все лантаноиды – парамагнетики, но лютеций обладает слабой магнитной восприимчивостью, а европий, гадолиний, диспрозий и эрбий при Т ниже комнатной обладают ферромагнетизмом. Только гадолиний имеет наивысшую точку Кюри (16°С). Интересными магнитными свойствами обладает диспрозий, который в зависимости от Т проявляет свойства парамагнетика, ферромагнетика и антиферромагнетика. Наиболее тугоплавкими являются тулий и лютеций. В характере изменения Тпл лантаноидов чётко проявляется внутренняя периодичность. Минимальными Тпл обладают европий и иттербий, у которых имеются устойчивые 4f75d06s2 и 4f145d06s2 электронные конфигурации. Легкоплавкие лантан, церий и празеодим характеризуются высокими Ткип, то есть являются трудноиспаряемыми. Европий и иттербий в ряду лантаноидов имеют самые низкие Ткип – наиболее летучи. Гадолиний отличается от других лантаноидов наибольшим электрическим сопротивлением и теплопроводностью. Лист металлического гадолиния в несколько сантиметров обладает такой же надёжностью, что и многометровая толща бетона или воды. Электропроводность иттербия в 3 раза больше, чем у остальных лантаноидов.

Все лантаноиды – довольно тяжёлые металлы (табл. 4).

Европий – самый лёгкий из лантаноидов, его плотность равна 5,245г/см3. У него же наибольшие из всех лантаноидов атомные радиус и объём. С этими "аномалиями" свойств европия некоторые исследователи связывают тот факт, что из всех лантаноидов европий – наиболее устойчив к корродирующему действию влажного воздуха и воды.

А вот у гадолиния максимальное по сравнению со всеми другими лантаноидами удельное электрическое сопротивление – примерно вдвое больше, чем у его аналогов. И удельная теплоёмкость этого элемента на 20% превышает удельную теплоёмкость лантана и церия1. Наконец, магнитные свойства ставят гадолиний в один ряд с железом, кобальтом и никелем. В обычных условиях, когда лантан и остальные лантаноиды парамагнитны, гадолиний – ферромагнетик, причём даже более сильный, чем никель и кобальт.

1 – При 25°С

Табл. 4. Физические свойства лантаноидов

Элемент ρ, г/см3 Тпл, °С Ткип, °С
Лантан 6,17 920 3454
Церий 6,66 795 3257
Празеодим 6,78 935 3212
Неодим 7,00 1024 3127
Прометий 7,22 1027 2730
Самарий 7,54 1072 1752
Европий 5,26 826 1597
Гадолиний 7,90 1321 3233
Тербий 8,27 1356 3041
Диспрозий 8,54 1406 2335
Гольмий 8,80 1461 2572
Эрбий 9,05 1497 2510
Тулий 9,33 1545 1732
Иттербий 6,98 824 1193
Лютеций 9,84 1652 3315

Но и железо, и кобальт сохраняют ферромагнитность и при температуре около 1000°С (железо) и 631°С (никель). Гадолиний теряет это свойство, будучи нагретым, всего до 290°К (17°С). Необычны магнитные свойства и у некоторых соединений гадолиния. Его сульфат и хлорид, размагничиваясь, заметно охлаждаются. Это свойство использовали для получения сверхнизкой температуры. Сначала соль Gd2(SO4)3•H2O помещают в магнитное поле и охлаждают до предельно возможной температуры. А потом дают её размагнититься. При этом запас энергии, которой обладала соль, ещё уменьшается, и в конце опыта температура кристаллов отличается от абсолютного нуля всего на 0,001°С.

По данным академика А. П. Виноградова, по тугоплавкости тулий второй среди лантаноидов: температура его плавления - 1545° С. Лишь лютецию он уступает по температуре плавления (табл. 4).

Химические свойства

По своим химическим свойствам лантаноиды – достаточно активные металлы, взаимодействующие с большинством неметаллов и образующие сплавы со многими металлами. С увеличением порядкового номера лантаноида его химическая активность уменьшается. Например, церий на воздухе сгорает при более низкой температуре, чем магний и алюминий, неодим окисляется медленно, а гадолиний устойчив на воздухе в течение многих месяцев.

В ряду напряжений они находятся значительно левее водорода (электродные потенциалы лантаноидов составляют около –2,4 В (табл. 5)). Уже во влажном воздухе для многих лантаноидов характерны потеря металлического блеска и образование на поверхности плёнки оксидов.

Табл. 5. Стандартные электродные потенциалы лантаноидов

Лантаноид φ° 298, эв
Лантан -2,52
Церий -2,92
Празеодим -2,46
Неодим -2,43
Прометий -2,42
Самарий -2,41
Европий -2,40
Гадолиний -2,40
Тербий -2,34
Диспрозий -2,35
Гольмий -2,32
Эрбий -2,30
Тулий -2,38
Иттербий -2,27
Лютеций -2,25

Поэтому все лантаноиды взаимодействуют с водой с выделением водорода:

2Ме + 6Н2О → 2Ме(ОН)3 + 3Н2 ↑

Се + 2Н2О → СеО2 + 2Н2 ↑

Реагируя с водой, только европий образует растворимый кристаллогидрат жёлтого цвета, который при хранении белеет. По – видимому, здесь происходит дальнейшее разложение до оксида европия (III).

2Eu + 10H2O → 2Eu(OH)3•2H2O + 5H2↑

2Eu(OH)3•2H2O → Eu2O3 + 5H2O

Химическая активность простых веществ лантаноидов очень высока, поэтому они взаимодействуют почти со всеми элементами периодической системы Д. И. Менделеева: с кислородом, галогенами, серой, углеродом, азотом, водородом, кремнием, фосфором и т. д. Причём с двумя последними реакции идут при нагревании. Химическая активность элементов в ряду Ce – Lu несколько уменьшается из-за уменьшения их радиусов.

4Ме + 3O2 200-400°С → 2Ме2O3

Се + О2 → СеО2

2Me + 3Hal2 → 2MeHal3

2Me + 3S → Me2S3

4Me + 3C → Me4C3

2Me + N2 750-1000ْ C → 2MeN

2Me + 3H2 → 2MeH3

4Me + 3Si t°C → Me4Si3

Me + P t°C → MeP

Лантаноиды благодаря положению в ряду СЭП реагируют и с кислотами – неокислителями с выделением водорода:

2Ме + 6HCl → 2МеCl3 + 3Н2 ↑

2Ме + 3H2SO4 (разб.) → Ме2(SO4)3 + 3Н2 ↑

Лантаноиды также образуют непрерывные твёрдые растворы с металлами подгруппы галлия. При взаимодействии лантаноидов, например со скандием, возникают очень прочные металлиды (рис 2)


t°C 1470°

 1500

1400

1300

1200

 1100 Pr2Ga3 1044°

 1000

 900 (911°) 852° PrGa2

800 686° PrGa

 700

 600 576° Pr3Ga

 0

10 20 30 40 50 60 70 80 90 100

Pr Ат. доли, % Ga Ga

Рис3. Диаграмма состояния системы празеодим - галлий

Характеристические соединения

Лантаноиды, как и другие группы химических элементов, имеют так называемые характеристические соединения. Это чаще всего оксиды, сульфиды, нитриды, гидриды и другие бинарные соединения.

Оксиды лантаноидов – самые прочные оксиды. Об этом свидетельствуют величины энтальпий образования (табл. 6).

Табл. 6. Энтальпии образования оксидов лантаноидов

Соединения La2O3 Nd2O3 Eu2O3 Gd2O3 Dy2O3 Er2O3 Yb2O3 Lu2O3
ΔН° 298 КДж/моль -1795 -1808 -1661 -1821 -1863 -1894 -1815 -1878

В свою очередь, среди оксидов лантаноидов наименьшей прочностью отличается оксид европия (III). Оксиды лантаноидов – тугоплавкие и трудно растворимые в воде вещества, хотя интенсивно взаимодействуют с ней с выделением теплоты. Получают оксиды прокаливанием соответствующих гидроксидов, нитратов и карбонатов, а также непосредственным окислением металлов.

2Ме(ОН)3 → Ме2О3 + 3Н2О

4Ме(NO3)3 → 2Me2O3 + 12NO2 + 3O2↑

Mе2(СО3)3 → Ме2О3 + 3СО2 ↑

4Ме + 3O2 200-400°С → 2Ме2O3

2Ме(ОН)3 t°C → Me2O3 + 3H2O

Цвет оксидов разнообразен – от белого до красного и голубого. В воде оксиды практически нерастворимы. Характер оксидов основный, хотя основность уменьшается от церия к лютецию. Это подтверждается возможностью у некоторых из этих элементов при сплавлении с оксидами щелочных металлов соединений типа МеLnO2:

Ме2О3 + Na2O → 2NaМеО2

Данная реакция свидетельствует о некоторой амфотерности оксидов лантаноидов.

Некоторые оксиды лантаноидов являются сильными восстановителями, например, оксид празеодима (III):

3Pr2O3 + KClO3 → 6PrO2 + KCl

Pr+3 -℮-- → Pr+4 1 6

Cl+5 -6℮-- → Cl-1 6 1

Оксиды лантаноидов в воде нерастворимы, но энергично ее присоединяют с образованием гидроксидов:

Э2О3 + 3Н2О → 2Э(ОН)3

Нагревание металлических тербия и празеодима на воздухе ведёт к образованию