Логические элементы интегральных микросхем

а

 

Рис. 5. Логический элемент с эмиттерными связями (ECL):

а – схема ИЛИ, ИЛИ-НЕ;

б – функциональное обозначение; в – расширитель функции ИЛИ

 
 


Выполнение выходных каскадов логической схемы на эмиттерных повторителях (выходное сопротивление 30…50 Ом) обеспечивает большую нагрузочную способность базового элемента (n>10). Кроме того, при наличии эмиттерных повторителей смещается выходной уровень 1 элемента на величину падения напряжения на переходе кремниевого транзистора (Uбэ=0,7…0,8 В), создавая условия для ненасыщенного режима работы транзисторов последующей логической группы.

Рис. 6. Логический элемент ECL с мощным выходом:

а) схема элемента ИЛИ, ИЛИ-НЕ;

Транзисторы выходных эмиттерных повторителей работают в ненасыщенном режиме, так как напряжение на коллекторе всегда выше напряжения на базе и переходы коллектор-база никогда не оказываются смещенными в прямом направлении. Перепад напряжений логических уровней 1 и 0, как правило, находится в пределах 0,7…0,8 В, а помехоустойчивость составляет 0,15…0,2 В. За счет низкого выходного сопротивления уровень помех в линиях связи между элементами невысок, а постоянная токовая нагрузка элемента не вызывает всплесков напряжения в цепях питания. Наличие двух парафазных логических выходов в ECL-ИМС обеспечивает большую гибкость при проектировании цифровых устройств.

Увеличение коэффициента объединения по входам ИЛИ осуществляется за счет подключения к базовой ECL-ИМС логического расширителя. Однако на практике стремятся избежать применения логических расширителей, подключение которых существенно снижает быстродействие ИМС из-за значительных паразитных емкостей, что ограничивает параметр m в ECL БИС.

Для обеспечения высокой нагрузочной способности в состав серий ECL-ИМС включаются, микросхемы с мощным выходом (рис. 6), обеспечивающие n>30 при Cн>100 пФ. Возможна реализация ECL-ИМС, выходной каскад которой выполнен в виде повторителя со свободным эмиттером. Такая реализация выхода позволяет подключать в качестве нагрузки микросхемы с различными входными сопротивлениями. Это обеспечивает расширение логических возможностей по ИЛИ за счет объединения выходов ИМС без применения логических расширителей.

В качестве ЛЭ, дополняющих функциональные возможности типовых ECL-ИМС, применяются ИМС эмиттерной функциональной логики (EFL). Их особенностью является применение многоэмиттерных транзисторов (МЭТ), реализующих безынверсную функцию (рис. 7).

Рис. 7. Логический элемент ELF: а) схема элемента И;

б) функциональное обозначение

 

Применение в качестве выходного каскада элемента многоэмиттерного транзистора позволяет осуществлять соединение типа проводное ИЛИ и обеспечивает распараллеливание нагрузки.

Комбинация элементов EFL (функции И) с элементами ECL (функции ИЛИ-НЕ), которые хорошо согласуются в кристалле технологически и электрически, позволяет создавать узлы БИС с минимумов активных компонентов и более высоким функциональным быстродействием.

Большая потребляемая мощность элементов ECL является основным препятствием увеличения степени интеграции ECL-БИС, которая практически не может превысить 1000 вентилей в кристалле. При этом мощность рассеивания на кристалле может достигнуть 5…10 Вт, что потребует применения специальных конструктивных решений и систем охлаждения аппаратуры. Такими решениями могут быть теплоотводящие платы, радиаторы, охлаждающие жидкости и вентиляторы обдува, что значительно снизит эффект микроминиатюризации от внедрения БИС.

Важнейшее преимущество ECL-ИМС — наибольшее быстродействие по сравнению со всеми другими видами микросхем, а также высокая помехозащищенность благодаря значительным рабочим токам в цепях передачи информации определяют повсеместное применение ИМС в процессорах суперЭВМ с быстродействием до  и более. К классу ECL (ЭСЛ) относятся, в частности, ИМС серий 100, 1500, 500.

Интегральные элементы инжекционной логики (И2Л)

Схемы интегральной инжекционной логики (ИИЛ), или И2Л-схемы, являются развитием схем с непосредственными связями (рис. 8).

Типовой И2Л-вентиль содержит транзисторную структуру n-p-n, включенную по схеме с общим эмиттером и выполняющую роль выходного инвертирующего усилителя, обеспечивающего развязку выходов для исключения их взаимного влияния, а также дополняющую транзисторную структуру p-n-p, включенную по схеме с общей базой и служащую для инжекции тока в базу выходного усилителя. Соответственно транзистор VT1 называют инжектором, а VT2инвертором (рис. 8, а). Эти транзисторы в многоступенчатой логической схеме совмещаются в объеме полупроводника, причем база транзистора p-n-p есть эмиттер транзистора n-p-n, а коллекторы транзисторов p-n-p есть базовые области транзисторов n-p-n. Это обеспечивает высокую плотность упаковки элементов инжекционных микросхем на кристалле.

Типовые многовходовые И2Л вентили с логикой ИЛИ-НЕ и И-НЕ приведены на рис. 8, в-е. Функция ИЛИ организуется объединением коллекторов выходных инвертирующих транзисторов, а функция И — подачей инверсных управляющих сигналов на входе и подключением дополнительного инвертирующего усилителя на выходе логической схемы.

Рис. 8. Логические элементы инжекционнои логики (И2Л):

а,б - схема инвертора и её функциональное обозначение; в,г- схема ИЛИ-НЕ и её функциональное обозначение;

д,е - схема И-НЕ и её функциональное обозначение

 

Работа инжекционной микросхемы может быть рассмотрена на основе логического вентиля ИЛИ-НЕ (рис. 8, в, г). При уровнях логического 0 на входах X1, X2 ток инжектора через многоколлекторный транзистор VT3 не сможет поступить в базы транзисторов VT1, VT2 и они останутся запертыми, что приведет к формированию на выходе вентиля (Y1 и Y2) уровня 1. При поступлении логической 1 на любой из входов (это соответствует режиму запирания транзистора предшествующего каскада) инжектируемый ток через соответствующий коллектор транзистора VT3 поступит в базу транзистора схемы ИЛИ-НЕ (при X2=1 ток поступит в базу транзистора VT2) и откроет его, что приведет к формированию логического 0 на выходах Y1=Y2=0. (Логику работы схемы И-НЕ (рис. 8, д, е) предполагается рассмотреть самостоятельно).

Быстродействие переключения инжекционных микросхем определяется током инжектора, увеличение которого до определенного значения позволяет уменьшить задержку срабатывания вентиля. Однако, при значительном увеличении тока инжектора из-за накопления больших избыточных зарядов в активных областях, задержка срабатывания резко возрастает.

Повышение быстродействия реализуется при уменьшении геометрических размеров транзисторов, увеличении коэффициентов усиления, а также при создании И2Л-ИМС с небольшими логическими перепадами уровней сигналов. Логический перепад можно снизить в 2…3 раза за счет применения диодов Шотки, включенных последовательно между выходом одного логического каскада и входом другого. Вариант включения диодов Шотки приведен на примере инвертора (рис. 9).

Рис. 9. Схема быстродействующего элемента И2Л с диодами Шотки (функция И-НЕ) (а) и его функциональное обозначение (б)

 

Важной проблемой проектирования БИС на инжекционных элементах является обеспечение необходимой помехоустойчивости. Типовые И2Л-вентили имеют низкую помехоустойчивость к запирающим помехам (менее 0,1 В), что предопределило их использование преимущественно во внутренних узлах БИС. Для повышения помехоустойчивости во входных каскадах БИС применяют вентили с несколькими включенными последовательно базовыми диодами Шотки (помехоустойчивость к запирающим помехам увеличивается в 2…3 раза).

В заключение отметим, что И2Л-схемы весьма перспективны для построения БИС. Так отечественные микропроцессоры К583, К584 выполнены на базе схемотехники И2Л.


ЛИТЕРАТУРА

1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2001. - 379 с.

2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2003. - 440 с.

3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2006. - 885 с.

4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2001. - 526 с.

5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2000. - 416 с.

6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2000. - 160 с.



[*] приводим общепринятые в мировой практике обозначения разновидностей ИМС