Электроснабжение и электроборудование куста с внедрением СУ "Электон-06"

ВВЕДЕНИЕ


Электроэнергетика – отрасль промышленности, занимающая производством электроэнергии на электростанциях и передачей ее потребителям. Она является основой развития производственных сил в любом государстве. Энергетика обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств. Стабильное развитие экономики России невозможно без постоянно развивающейся энергетики. Энергетическая промышленность тесно связана с комплексом топливной промышленности.

Российская энергетика – это более 600 тепловых, свыше100 гидравлических и 9 атомных электростанций. Ежегодно ими вырабатывается свыше 1 триллиона кВт/ч электроэнергии и более 1 миллиарда Гкал тепла. Общая длина линий электропередач превысила 2,5 млн. километров.

Для обеспечения надежного электроснабжения объектов добычи нефти на новых месторождениях приходится создавать мощные энергетические базы. Трудность создания таких баз часто заключается в значительной удаленности нефтяных промыслов от энергетических центров. Поэтому при проектировании электроснабжения нефтяного месторождения, разрабатывают такую систему, которая обеспечивала бы возможность роста потребления электроэнергии без коренной реконструкции всей системы электроснабжения. Запроектированная система электроснабжения должна обеспечивать в условиях после аварийного режима, путем соответствующих переключений, питание электроэнергией тех приемников электроэнергии, работа которых необходима для продолжения производства.

Питание электрической энергией потребителей нефтяной промышленности осуществляется от сетей энергосистем или от собственных местных электрических станций. Потребители с большой установленной мощностью электрифицированных механизмов, например перекачивающие насосные станции магистральных трубопроводов, комплекс установок нефтяных промыслов, как правило, питаются от энергосистем.

На нефтяных промыслах в настоящее время находятся в эксплуатации несколько десятков типоразмеров отечественных и импортных погружных центробежных электронасосов с двигателями погружного типа. С помощью этих насосов получают свыше 70% общего количества нефти, добытого механизированным способом. Разработан и находится в эксплуатации широкий ряд оборудования для управления установками ЭЦН: станции управления, тиристорные станции плавного пуска, выходные фильтры, системы погружной телеметрии и т.д.

1 ОБЩАЯ ЧАСТЬ


1.1 Назначение установки и применяемого электрооборудования


Выбор электрооборудования скважины определяется способом добычи нефти. Если скважина имеет хороший приток жидкости к забою и статический ее уровень постоянен, то добыча осуществляется установкой электроцентробежного насоса.

Состав погружной части определяется опять же параметрами скважины, но к основному подземному электрооборудованию относят электроцентробежный насос (ЭЦН) и погружной электродвигатель (ПЭД). Если скважина высокодебитная, то для того, чтобы улучшить контроль за ее состоянием в скважину спускают телеметрическую систему (ТМС). Наличие большого количества газа в нефти заставляет использовать газосепаратор, а отсутствие газа или малое его количество допускает установку модуля. Питание к двигателю подводится погружным кабелем типа КПБП, КРБП, КПБК и КРБК с сечением 10, 16, 25 и 35 мм2. В данном курсовом проекте был выбран кабель КПБП 3 16мм2.

На поверхности земли от клемной коробки, в которой производится соединение погружного кабеля с кабельной линией, установлена кабельная эстакада. По этой эстакаде, по нижним полкам, укладывается кабельная линия установки ЭЦН. Наземное оборудование установлено на площадке механизированной добычи (ПМД). К наземному оборудованию относят трансформатор питания погружных насосов (ТМПН 63/3), станцию управления установкой (СУ Электон М) и выходной фильтр (L-C фильтр не установлен).

Также к наземному оборудованию относят кабели, играющие роль перемычек между станцией управления и трансформатором, и питающие кабели, соединяющие станцию управления с кустовой трансформаторной подстанцией (КТПН).


1.2 Учет электроэнергии и схемы подключения счетчиков


Экономия электроэнергии предполагает рациональное использование энергетических ресурсов и сокращение их потерь. Следовательно, одной из самых важных задач народного хозяйства является экономия электроэнергии, так как удовлетворение энергетических потребностей за счет известных источников, таких как уголь, газ, нефть требует денежных затрат на их добычу, транспортировку и переработку. В этих условиях экономия электроэнергии и сбережение топлива принимают значение электросберегающей политики. Для этого могут применяться как технические, так и организационные меры.

Технические меры дадут определенные результаты после их разработки и внедрения с помощью новых высокоэффективных научно-производственных решений, в свою очередь организационные меры занимают меньше времени, а энергосберегающая стратегия осуществляется в два этапа.

Первый этап включает в себя разработку и внедрение мероприятий, направленных на усиление контроля за использованием энергии, моральное и материальное поощрение за экономию, частичная реконструкция предприятий, замена устаревшего оборудования новым.

На втором этапе предпринимаются меры, требующие больших материальных затрат и перестройки промышленности.

В электрических сетях промышленных предприятий осуществляют расчетный учет активной энергии для денежных расчетов с энергоснабжающей организацией, и технический учет, служащий для межцеховых расчетов, контролем за соблюдением режимов потребления электроэнергии, определяющие нормы расхода электроэнергии на единицу продукции. Особенно важное значение приобрел технический учет электроэнергии в связи с переходом предприятий на самоокупаемость и самофинансирование. Кроме того, учитывают потребление реактивной энергии для определения скидок и надбавок к тарифу на электроэнергию за компенсацию реактивной мощности.

Счетчики расчетного учета устанавливают на границе раздела сети электроснабжающей организации и потребителя. Их можно устанавливать на вводе линии электропередачи при питании или связи с другими потребителями на питающем напряжении силовых трансформаторов при отсутствии на стороне высшего напряжения трансформаторов тока и напряжения соответствующих классов точности, или если трансформаторы присоединены по упрощенной схеме без выключателей.

Если при некоторых режимах электрической сети предприятия генерируют реактивную мощность в сеть энергосистемы, то устанавливают два счетчика реактивной энергии со стопорами для учета токов разных направлений. Эти счетчики устанавливают в тех же местах, что и счетчики активной энергии.

Счетчики для технического учета рекомендуется устанавливать на вводах в распредустройства, на линиях 6-10 кВ, отходящих от подстанций 110/6-10 кВ или 35/6-10 кВ по которым по радиальной или магистральной схеме получают питание кусты скважин.

Активную и реактивную энергию учитывают обычно трехфазными счетчиками, включенными через измерительные трансформаторы тока и напряжения. Для учета электрической энергии применены счетчики ПСЧ-4, которые установлены в КТПН 10/0,4 кВ на стороне 10 кВ.


1.3 Техника безопасности при эксплуатации и обслуживании

электроустановок


Работы по ремонту электрооборудования производятся по наряду-допуску, распоряжению или в порядке текущей эксплуатации с записью в оперативном журнале согласно перечню испытаний согласно перечня работ, выполняемых электротехническим персоналом в порядке текущей эксплуатации, утвержденным главным энергетиком.

К обслуживанию электрооборудования на нефтепромысле допускаются лица не моложе 18 лет, не имеющие медицинских противопоказаний, мешающих выполнению работ, получившие вводный и первичный инструктажи на рабочем месте, производственное обучение, проверку знаний электробезопасности в нефтедобывающей промышленности.

Электромонтер должен знать схему электроснабжения объектов нефтедобычи, зрительно представлять прохождение ЛЭП 6-10 кВ на местности, направление трасс, местный ландшафт, расположение разъединителей на ЛЭП и так далее.

Электромонтер должен иметь навыки приемов технических методов обслуживания электроустановок. Он должен быть обеспечен всеми средствами индивидуальной защиты и спецодеждой. Инструменты и средства защиты должны быть испытаны, исправны и использоваться по назначению.

Техника безопасности при монтаже электрооборудования и электрических сетей перед началом земляных работ в местах расположения подземных коммуникаций в обязательном порядке составляют письменное распоряжения организаций за эксплуатацию этих коммуникаций. Запрещается пользоваться ударным инструментом вблизи этих коммуникаций.

К электрическому испытанию кабеля приступают, проверив отсутствие на нем напряжения. При работе на угловой опоре следует находиться на стороне опоры, противоположной внутреннему углу, образованному проводами.

При монтаже воздушных линий запрещается крепить оттяжки к опорам монтируемой или действующей воздушной линии. Отдельные смонтированные участки воздушных линий длиной 3-5 километров следует обязательно закорачивать или заземлять. При монтаже оборудования и аппаратуры понижающих станций или распределительных устройств следует сначала проверить исправность монтажных приспособлений, целостность тросов, канатов и их соответствие массе перемещаемых грузов.


1.4 Охрана окружающей среды на объекте


Объекты добычи нефти являются мощными загрязнителями окружающей среды, поэтому необходимо стремиться к снижению этого негативного воздействия. Основным загрязнением кустовых площадок и прилегающих территорий являются разливы нефтесодержащей жидкости. Вследствие этого, организация, осуществляющая добычу должна требовать от своих работников и подрядных организаций определенных правил по охране окружающей среды на кустовых площадках.

Основное загрязнение нефтью производят течи и прорывы в трубопроводах, которые при появлении должны устраняться в кратчайшие сроки. Бригады капитального и подземного ремонта скважин, осуществляющие подъем колонны насосно-компрессорных труб из скважины могут по неосторожности и, отходя от техпроцесса производства работ, допустить разбрызгивание и разлив нефти по кустовой площадке, поэтому, ими должны применяться специальные механизмы, препятствующие разливу нефти, устанавливаться резервуары для слива нефти из колонны при подъеме.

При бурении новых скважин, вторых стволов, проведении гидравлического разрыва пласта буровыми организациями должны строго соблюдаться правила по хранению и эксплуатации буровых растворов.

На кустовых площадках должны быть установлены контейнеры для хранения бытовых отходов, промасленной ветоши, резинотехнических изделий. Кустовая площадка при сооружении обсыпается песчаным валом - обваловкой.

Анализ химического состава почв имеет большое значение в разработке программ оптимизации природопользования. Общеизвестна биологическая значимость микроэлементов, которые играют важную роль в процессах роста и развития растений. Микроэлементы участвуют в синтезе хлорофилла, в построении ферментов, оказывают влияние на ассимиляцию растениями азота. С этой точки зрения необходим контроль за содержанием микроэлементов в почвах и обеспечение их оптимального содержания на тех участках, где проходит биологическая рекультивация. С другой стороны, некоторые микроэлементы являются одними из наиболее опасных загрязнителей окружающей среды. Среди них следует выделить тяжелые металлы Pb, Hg, Cd, а также Си, Ni, Co, Mo, Cr, Zn, V. Анализ микроэлементного состава почв на фоновых и техногеннотрансформированных участках позволяет оценить интенсивность загрязнения окружающей среды.

Мероприятия по охране окружающей среды при раз­работке нефтяных месторождений должны быть направлены на предотвращение загрязнения земли, поверхностных и подземных вод, воздушного бассейна нефтепродуктами (жидкими и газооб­разными), промысловыми сточными водами, химреагентами, а также на рациональное использование земель и пресных вод. Они включают в себя:

а) полную утилизацию промысловой сточной воды путем ее за­качки в продуктивные или поглощающие пласты;

б) при необходимости, обработку закачиваемой в продуктив­ные пласты воды антисептиками с целью предотвращения ее за­ражения сульфатовосстанавливающими бактериями, приводящи­ми к образованию сероводорода в нефти и в воде;

в) использование герметизированной системы сбора, промысло­вого транспорта и подготовки продукции скважин;

г) полную утилизацию попутного газа, использование замкну­тых систем газоснабжения при газлифтной эксплуатации скважин;

д) быструю ликвидацию аварийных разливов нефти, строитель­ство нефтеловушек на реках, в местах ливневых стоков;

е) создание сети контрольных пунктов для наблюдения за со­ставами поверхностных и подземных вод;

ж) исключение при нормальном ведении технологического про­цесса попадания на землю, в поверхностные и подземные воды питьевого водоснабжения ПАВ, кислот, щелочей, полимерных раст­воров и др. химреагентов, используемых как для повышения нефтеотдачи, так и для других целей;

з) применение антикоррозионных покрытий, ингибиторов для борьбы с солеотложениями и коррозией нефтепромыслового обо­рудования;

и) организацию регулярного контроля за состоянием скважин и нефтепромыслового оборудования.

2 РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ


2.1 Расчет мощности и выбор насоса установки ЭЦН


Электроцентробежные насосы используют для механизированной добычи жидкости из скважины и выбирают в зависимости от параметров скважины по условию:


, (2.1) где


Qск-дебит скважины, м3/сут;

Нск-напор, необходимый для подъема жидкости из скважины, м;

Qн-номинальная подача насоса, м3/сут;

Нн-номинальный напор насоса, м.

Определяем депрессию Нд , м:


, (2.2) где К-


коэффициент продуктивности скважины.



Находим динамический уровень жидкости в скважине Нд ,м:

, (2.3) где


Нст-статический уровень жидкости в скважине, м.

Определяем глубину погружения насоса L, м:


L=Нд+(50-100) (2.4)

L=742.85+50=792.85м


Находим потери напора из-за трения жидкости о стенки насосно-компрессорных труб (НКТ) hтр , м:


, (2.5) где


-коэффициент трения жидкости в НКТ;

L-глубина погружения насоса, м;

l-расстояние от устья скважины до сепаратора, м;

d-диаметр насосных труб, м.



Находим напор, необходимый для поднятия жидкости из скважины Нск , м:


, (2.6)


где Нг-разность геодезических уровней скважины и сепаратора, м;

Нт-потеря напора в трапе, м.

Нск=600+142.85+35.06+6+10=794 м.

При выборе насоса необходимо соблюдение условия 2.1. Чтобы подогнать напор насоса к необходимому - надо снять несколько ступеней насоса.

Выбираем либо насос ЭЦН6-100-900,паспортные данные которых приведены в таблице 2.1.


Таблица 2.1

Тип

Подача,

м 3/сут

Напор, м Внутренний диаметр обсадной колонны, мм

КПД,

%

Число

ступеней

ЭЦН6-100-900 75-145 940-560 121,7 75 48 125








Для насоса ЭЦН6-100-900строим график зависимости напора от подачи:

Рисунок 2.1 - График зависимости напора, создаваемого

насосом ЭЦН6-100-900 от его подачи


Характеристику насоса можно приблизить к условной характеристике скважины путем уменьшения числа ступеней насоса.

Находим число ступеней, которые нужно снять с насоса для получения необходимого напора Z1 , шт:


(2.7) где Zн-


число ступеней насоса в полной сборке по паспорту, шт;

Нн-номинальный напор насоса в полной сборке по паспорту, м.



Находим число ступеней насоса после снятия лишних ступеней Z1 , шт:


, (2.8)


Z1=125-22=102.7 шт


Значит, насос ЭЦН6-100-900 должен иметь 103 ступеней. Вместо снятых 22 ступеней устанавливаются проставки.


2.2 Расчет мощности и выбор двигателя установки ЭЦН


Для привода центробежных погружных насосов изготовляются погружные асинхронные электродвигатели типа ПЭД, которые удовлетворяют следующим требованиям. Их диаметр несколько меньше нормальных диаметров применяемых обсадных колонн. Двигатели защищены от попадания внутрь пластовой жидкости, что достигается заполнением их трансформаторным маслом, находящимся под избыточным давлением 0,2 МПа относительно внешнего гидростатического давления в скважине.

Полная мощность двигателя, необходимая для работы насоса определяется по формуле:


, (2.9) где kз-


коэффициент запаса kз=1,1 - 1,35;

-плотность жидкости в скважине, кг/м3;


-КПД насоса.


Предварительно выбираем два двигателя, подходящие по номинальной мощности. Их паспортные данные заносим в таблицу 2.2.


Таблица 2.2

Параметры ПЭД32-117ЛВ5 (I) ПЭД28-103-М (II)

Мощность, кВт

Напряжение, В

Рабочий ток, А

КПД, %

32

1000

25,5

0,86

84

28

850


0,73

73


Для повышения напряжения до номинального напряжения двигателя и для компенсации потерь в кабеле и других элементах питающей сети применяются повышающие трансформаторы питания погружных насосов (ТМПН).

Трансформатор выбирается по полной мощности двигателя:

(2.10)


Sдв=1,73 1000 25,5 10-3=44,12 кВА

Предполагаем к установке трансформатор ТМПН 63/3 УХЛ1.

Проверяем трансформатор по мощности по условию:


Sдв<Sтр (2.11)


44,12 кВА<63 кВА

Трансформатор по мощности подходит.

Проверяем трансформатор по току, находим ток во вторичной обмотке:


, (2.12) где


U2н- напряжение вторичной обмотки трансформатора, В.



Для нормальной работы необходимо выполнение условия:


Iдв < Iном (2.13)


25,5А<35,29А

Трансформатор по току подходит. Выбираем трансформатор ТМПН 63/3 УХЛ1.

В нижеприведенной таблице указаны паспортные данные выбранного трансформатора.


Таблица 2.3

Тип U1, кВ I1, А Группа соединения U2, кВ I2, А
ТМПН 63/3 УХЛ1 0,38 95,83
1143-1106-1069-1032-995-958-… 35,29

2.3 Технико-экономическое обоснование выбранного типа двига

теля


1. Вычислим приведенные потери первого двигателя:

Находим потери активной мощности I двигателя по формуле:


, (2.14)



Реактивную нагрузку определяем по формуле:


, (2.15)



Вследствие того, что требуется компенсация реактивной мощности, то экономический эквивалент реактивной мощности Кэк, кВт/кВАр находим по формуле:


, (2.16)


где - удельные приведенные потери;

- значение коэффициента отчислений (для статических

конденсаторов р=0,225);

- капитальные вложения на установку конденсаторов

(Кук=616,9 руб/кВАр);

- стоимость 1 кВТ/год электроэнергии;


- удельные потери ( );


,


(2.17) где - стоимость 1 кВт/час электроэнергии ( );

Тг- число часов работы установки в году (для трехсменной

работы );


;

;


Приведенные потери активной мощности находим по формуле:


, (2.18)