Оптоэлектроника. Полупроводниковые светоизлучающие структуры

3   FK510 GaAsP Красный 660 20 1,6 2   TIL210 GaAsP Красный 670 50 1,8   2400 АЛ307А GaAlAs Красный 700 1 2 0,15   АЛ307Б GaAlAs Красный 700 1 2 0,6   АЛ107А GaAs 920 100 2 6   ЗЛ103А GaAs 900 50 1,6 1   IXL05 GaAs 900 750 1,8 2   TIL01 GaAs 900 50 1.3 0,05   3. ДВУХЦВЕТНЫЕ СВЕТОДИОДЫ.

В рассмотренных до сих пор светодиодах для получения различного цвета излучения необходимо было использовать различные полупроводниковые материалы. Однако можно создать монолитные структуры на основе светодиодов, которые в зависимости от их включения или соотношения токов в них будут излучать в различных спектральных областях. Проще всего такие структуры реализуются на фосфиде галия, который в зависимости от введённых в него примесей излучает зелёный, жёлтый, и красный цвет. Для этого на кристалле фосфида галия создают два pn-перехода, один из которых излучает красный, а другой зелёный свет. При смешивании обоих обоих цветов получается жёлтый цвет.

Используя три вывода от структуры, можно отдельно управлять обеими полупроводниковыми системами. Когда оба основных цвета (красный и зелёный) излучаются одновременно, человеческий глаз воспринимает результирующее излучение как жёлтый цвет. Точно так же путём изменения величины тока, текущего через элементы светодиода, удаётся изменять цвет излучения от жёлто-зелёного до красно-жёлтого оттенка. Одноцветные свечения - красное или зелёное - находятся на краях цветовой шкалы. Когда требуется получить излучение определённого цветового восприятия, лежащее в данной цветовой области, необходимо перед кристаллом GaP расположить соответствующие фильтры, слабо поглощающие красные и зелёные лучи.

Двухцветные светодиоды используются в качестве четырёхпозиционных (красный - жёлтый - зелёный - выключенное состояние) сигнализаторов. Они находят применение в многоцветных буквенных и цифровых индикаторах, а также в цветоаналоговых сигнализаторах. Например, в легковых автомобилях, используя соответствующую электронику, с их помощью можно контролировть степень зарядки батареи аккумуляторов. При измерении скорости их можно использовать в качестве оптических индикаторов скорости.

4. ИНДИКАТОРЫ НА СВЕТОДИОДАХ.

Для миниатюрных устройств отображения информации широко используются светодиоды на основе арсенида-фосфида галия (GaAsP), галия-алюминия-арсенида (GaAlAs), а также фосфида галия (GaP).

Все они высвечивают в видимой области спектра, характиризуются большой яркостью, большим быстродействием и большим сроком службы.

Для изготовления светодиодов, цифровых и цифробуквенных дисплеев из таких материалов используются технологические методы, широко применяемые в производстве интегральных схем. В зависимости от размеров дисплеи на светодиодах изготовляются как по монолитной,так и по гибридной технологии. В первом случае это интегральный блок светодиодов, выполненный на одном полупроводниковом кристалле. Так как размеры кристалла ограничены, то монолитные индикаторы - индикаторы малых размеров. Во втором случае излучающая часть индикатора представляет собой сборку дискретных светодиодов на миниатюрной печатной плате. Гибридный вариант является основным для для средних и больших светодиодных индикаторов.

Для светодиодных индикаторов разработаны и стандартизованы схемы управления и согласования на серийных интегральных схемах, что упрощает их схемотехнику и расширяет области применения.

Размеры рабочего кристалла светодиода малы (400 7& 0400 мкм). Излучающий кристалл - это светящаяся точка. Для того же, чтобы хорошо различать символы и цифры, их размеры не должны быть менее 3 мм. Для увеличения масштаба светоизлучающего кристалла в дисплее применяют линзы, рефлекторы, фоконы. Размеры знаков – от 3 до 1,5 мм и от 25 до 50 мм, что позволяет визуально контролировать изображение на расстоянии до 3 и 10 м соответственно.

Индикаторы на светодиодах изготовляются двух типов: сегментные (цифровые) и матричные (универсальные). Семисегментный индикатор позволяет воспроизводить все десять цифр (и точку) и некоторые буквы. Матричный индикатор содержит 7 7& 05 светодиодов (светящихся точек) и позволяет воспроизводить все цифры, буквы и знаки стандартного кода для обмена информацией.

Оба типа индикаторов могут выполняться как одноразрядными, так и многоразрядными, что позволяет создавать на их основе системы отображения различной сложности.

Литература. Нососв Ю.Р. Оптоэлектроника. Физические основы, приборы и устройства. М. 1978. Мадьяри Б. Элементы оптоэлектроники и фотоэлектрической автоматики. М. 1979 Оглавление.
1.ФИЗИЧЕСКИЕ ОСНОВЫ ОПТОЭЛЕКТРОНИКИ. 1
1.1. Предмет оптоэлектроники. 1
1.2. Генерация света. 3
1.3. Источники излучения. 5
2. СВЕТОДИОДЫ. 8
2.1. Конструкция светодиодов. 11
2.2. Свойства светодиодов. 12
3. ДВУХЦВЕТНЫЕ СВЕТОДИОДЫ. 14
4. ИНДИКАТОРЫ НА СВЕТОДИОДАХ. 15