Расчет и проектирование воздушных линий электропередач
профилем будет соответствовать месту установки первой промежуточной опоры. При таком положении шаблона во всех точках пролета габарит будет не меньше допустимого. Аналогично находится место установки второй промежуточной опоры и т.д.После монтажа анкерного участка в проводах происходит выравнивание напряжения, которое соответствует какому-то условному пролету. Этот пролет называется условным, и его длина, м, определяется из выражения:
, (6.3)
где li – фактическая длина i-го пролета в анкерном участке, м;
n – количество пролетов в анкерном участке;
=166.
В результате расчетов получили что lпр отличается от lр на
∙100%=18%,
что больше допустимых 5%. В таком случае заново проводится механический расчет, построение шаблона и расстановка опор на трассе. Для данного курсового проекта допускается изменить расстановку опор без проведения повторного механического расчета.
Построение нового шаблона.
,
Для построения кривой 1 в 1-ом квадранте выполняется несколько расчетов.
Таблица 6.2 – Построение кривой 1
l | 0 | 50 | 100 | 166 |
x | 0 | 25 | 50 | 83 |
y | 0 | 0,27 | 0,79 | 2,18 |
Новая расстановка опор показана на рисунке 6.3.
Приведенный пролет, м,
=132
Проверка:
∙100%=20%.
В результате повторного расчета разница между приведенным и расчетным пролетом снова велика. Расчет повторяется до тех пор пока разница между значениями пролетов будет не более 5%.
6.2 Проверка опор на прочность
При расстановке опор по профилю трассы все они должны быть проверены на прочность в реальных условиях. Проверка выполняется сопоставлением вычисленных для каждой опоры весового и ветрового пролетов со значениями этих пролетов, указанных в технических характеристиках опоры.
Весовой пролет, м,
, (6.4)
где эквивалентные пролеты вычисляются по формулам:
-первый (большой) эквивалентный пролет, м,
, (6.5)
-второй (малый) эквивалентный пролет, м,
, (6.6),
где l – действительная длина пролета, м;
Δh – разность между высотами точек подвеса провода, м;
Смежными эквивалентными пролетами, прилегающими к опоре, могут быть и два больших или два малых эквивалентных пролета. Тогда выражение (6.4) будет иметь вид:
;
или
.
Ветровой пролет, м,
. (6.7)
Расчет для второй опоры.
=108,4;
=206,9;
=157,6;
=141,0.
Для остальных опор расчет сводится в таблицу 6.2.
Таблица 6.2 – Проверка опор на прочность
№ опоры i | l'эi-1, м | l”эi-1, м | l’эi, м | l”эi, м | Δhi-1, м | Δhi, м | lвес, м | lветр, м |
1 2 3 4 5 6 7 |
- - - - 204,3 - - |
184,3 108,4 43,1 168,0 - 104,6 148,7 |
205,6 206,9 200,0 - 189,4 173,3 165,0 |
- - - 143,7 - - - |
0,55 2,23 2,99 0,86 1,54 1,82 0,58 |
2,23 2,99 0,86 1,54 1,82 0,58 0,41 |
194,9 157,6 121,5 155,8 196,8 138,9 156,8 |
175,5 141,0 154,5 179,0 160,5 154,0 158,5 |
Таким образом, для каждой опоры выполняются условия
7 Расчет монтажных стрел провеса провода и троса
Определяется исходный режим из соотношений трех критических пролетов и приведенного пролета: lк1 – мнимый, lпр=166 м>lк3=144,2 м.
На основании полученных соотношений определяется исходный режим. Это режим максимальной нагрузки с параметрами: σи=[σγ.max]=13,0 даН/мм2, γи=γmax=8,5·10-3 даН/(м·мм2), tи=tгол=-5°С.
Расчет напряжения при монтаже осуществляется с помощью уравнения
. (7.1)
Стрела провеса провода в интересующем пролете lф, м, определяется из выражения
, (7.2).
Тяжение провода, даН, рассчитывается по формуле
, (7.3)
С помощью уравнения состояния рассчитывается напряжение в проводе при температуре монтажа tmax=40°C и tmin=-10°C.
при tmax=40°C:
.
Полученное уравнение приводится к виду:
.
=5,53 даН/мм2.
Тяжение в проводе, даН,
,
=957,8.
при tmin=-10°C:
.
Полученное уравнение приводится к виду:
.
=10,74 даН/мм2.
Тяжение в проводе, даН,
=1860,2 даН.
Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м по формуле (7.2) рассчитываются стрелы провеса при максимальной и минимальной температурах, м,
lmax=194 м
=2,94;
=1,52;
lmin=125 м
=1,22;
=0,63.
Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.1.
Стрела провеса провода в габаритном пролете при температуре 15°С, м,
, (7.4)
=2,84.
Исходные данные для троса: σтгр=14,7 даН/мм2, γт1=8·10-3 даН/(м·мм2), t=15°C.
Стрела провеса троса в габаритном пролете в режиме грозы исходя из требуемого расстояния z для габаритного пролета, м,
, (7.5)
=3,104.
Определяется величина напряжения в тросе по известной величине fтгр, даН/мм2,
, (7.6)
=16,3.
Определяются напряжения в тросе при температуре монтажа из уравнения состояния, принимая в качестве исходного грозовой режим.
, (7.7)
Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м рассчитываются стрелы провеса троса, м,
, (7.8)
, (7.9)
Тяжение в тросе, даН,
, (7.10)
Расчет для температуры -10°С.
Полученное уравнение приводится к виду:
.
=20,33 даН/мм2.
Тяжение в тросе, даН,
=988 даН.
Стрела провеса при lmax=194 м, м,
=1,85.
Стрела провеса при lmin=125 м, м,
=0,77.
Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.2.
Таблица 7.1 – Монтажная таблица провода
Температура, °С | Напряжение, даН/мм2 | Тяжение, даН | Стрела провеса в пролете длиной, м | |
l=194 | l=125 | |||
-10 0 10 15 20 30 40 |
10,74 9,42 8,24 7,70 7,19 6,28 5,53 |
1860,2 1631,5 1427,2 1333,6 1245,3 1087,7 957,8 |
1,52 1,73 1,97 2,11 2,26 2,59 2,94 |
0,63 0,72 0,82 0,88 0,94 1,08 1,22 |
Таблица 7.2 – Монтажная таблица троса
Температура, °С | Напряжение, даН/мм2 | Тяжение, даН | Стрела провеса в пролете длиной, м | |
194 м | 125 м | |||
-10 0 10 20 30 40 |
20,33 18,61 17,03 15,60 14,33 13,20 |
988,0 904,4 827,7 758,2 696,4 641,5 |
1,85 2,02 2,21 2,41 2,63 2,85 |
0,77 0,84 0,92 1,00 1,09 1,18 |
Монтажные графики для провода и троса изображены на рисунках 7.1 и 7.2.
Рисунок 7.1 – Монтажные графики для провода
Рисунок 7.2 – Монтажные графики для троса
Заключение
В данном курсовом проекте были рассмотрены основные этапы проектирования механической части воздушных ЛЭП: выполнены выбор промежуточных опор, механический расчет проводов и грозозащитного троса, выбор линейной арматуры, произведены расстановка опор по профилю трассы и расчет монтажных стрел провеса.
В ходе выполнения данного курсового проекта получены навыки пользования справочными материалами и нормативными документами, а также навыки выполнения самостоятельных инженерных расчетов с привлечением прикладного программного обеспечения персональных компьютеров.
Список литературы
1. Правила устройства электроустановок. – СПб.: Издательство ДЕАН, 2001. – 928 с.
2. Проектирование механической части воздушных ЛЭП. Учебное пособие по курсовому и дипломному проектированию. – Киров, 2004.-99 с.
4