Разработка эффективной системы энергоснабжения на основе ВИЭ

(5.2.6.)

где:

a - отношение постоянных потерь к переменным.

Для двигателей постоянного тока параллельного возбуждения a=1...1,5 /46/. Принимаем a= 1.

(Вт)

(Вт)

Выбранный двигатель проходит по допустимому нагреву. На ста­тическую устойчивость двигатель проверяется по условию /46/:

Мдв.мах Мс.мах (5.2.7.)

где: Мдв.мах, Мс.мах - максимальный момент двигателя и гене­ратора соответственно, Нм.

Так как скорости вращения двигателя и генератора равны, то условие (5.2.7.) принимает вид:

, (5.2.8.)

Рдв.mах=2600 Вт (при увеличении тока возбуждения на 10%)

(Вт)

Таким образом, проверка показала, что МПТ выбрана правильно. Окончательно принимаем машину постоянного тока 2ПБВ112SУ1.


Таблица 5.2.1.

Расчет потерь мощности на нагрев

Nуч

ti

Pi,Вт

Xi

hi

(1-hi)/hi

i,Bт

i*ti

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1

3

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

531

427

465

590

652

811

1545

1999

1766

1035

1249

1535

1811

1839

1270

1298

1444

1206

831

630

612

0,29

0,24

0,26

0,33

0,36

0,45

0,85

1,11

0,98

0,57

0,69

0,85

1,00

1,02

0,70

0,72

0,80

0,67

0,46

0,35

0,34

0,68

0,64

0,66

0,70

0,71

0,75

0,80

0,80

0,80

0,77

0,79

0,80

0,80

0,80

0,79

0,79

0,80

0,79

0,75

0,-0

0,70

0,47

0,56

0,51

0,42

0,40

0,33

0,25

0,25

0,25

0,30

0,26

0,25

0,25

0,25

0,26

0,26

0,25

0,26

0,33

0,42

0,42

249

239

237

247

260

267

386

500

441

310

324

383

452

459

330

337

361

313

274

264

257

249

717

237

247

260

267

386

1000

441

310

324

383

452

459

330

337

361

313

274

264

257


5.2.Разработка принципиальной схемы электроснабжения.

Блок-схема системы электроснабжения представлена на листе 5. Система работает следующим образом. При наличии ветра ра­ботает В-установка, которая через муфту вращает МПТ и ГПТ. МПТ работает как генератор, который заряжает АБ через коммутатор ре­жимов КР. ГПТ подает напряжение на нагрузку. С-установка через коммутатор режимов КР также работает на зарядку АБ.

При отсутствии ветра или при сильном ветре В-установка оста­навливается и с помощью муфты отсоединяется от МПТ и ГПТ. АБ через КР подает питание на МПТ, которая работает как двигатель, вращаю­щий ГПТ. Таким образом ГПТ в отсутствии ветра вращается от МПТ, получающей электроэнергию от АБ. Так как МПТ потребля­ет ток, превышающий ток от С-установки, то одновременная подза­рядка АБ и их разрядка на МПТ недопустима. Для этого в системе предусмотрен КР, который подключает к С-установке только часть АБ, не задействованной на МПТ, и служит для сохранения вращения МПТ в режиме генератора и двигателя.

Соответствующая блок-схеме принципиальная схема приведенна на листе 5. Схема работает следующим образом.

При вращении под действием ветра ветроколеса переключатель SAI находится в положении 1(генераторное).В этом случае GB2(маши­на постоянного тока) работает в режиме генератора и через диодный мост VDI…VD6 заряжает 1/2 аккумуляторных батарей(например GB3). Во вращение от ветроколеса приводится и GB1 (генератор переменного тока), который подает напряжение к потребителям.

При остановке ветроколеса, переключатель SA1 переходит в по­ложение 2(двигательное) и через диодный мост VD1…VD6 напряжение с аккумуля­торных батарей GB3 подается на GB2, который в этом случае работает в двигательном режиме и вращает GB1 вместо ветроколеса..

В схеме предусмотрены:

- сигнализация напряжения на нагрузке и в цепях управления (HL1, HL2);

- защита силовой цепи (QF1, QF2);

- отсоединение электрических машин для ремонтных нужд (QS1).


5.3. Выбор аппаратуры управления и защиты.


Автоматический выключатель QF1 (см. рис. 5.2.2.) предназна­чен для защитного отключения генератора переменного тока GB1 при коротком замыкании в цепи нагрузки и выбирается из условий /21,46/:

Uан Uн;

Iан Iр.mах; (5.3.1.)

Iа.откл Iк(3).

где: Uан, Uн - номинальное напряжение автоматического выклю­чателя и сети соответственно, В;

Iан,, Iр.mах - соответственно номинальный ток автомати­ческого выключателя и максимальный рабочий ток в сети, А;

Iа.откл - максимальное значение тока короткого замыка­ния, которое автомат способен отключить, ос­таваясь в работоспособном положении, А;

Iк(3) - наибольший ток трехфазного короткого замыкания А.

Ток трехфазного короткого замыкания при питании от автоном­ной электростанции определяется по формуле /21/:

, (5.3.2.)

где: - действующее значение периодической составляющей тока К.З. за первый период, А;

kу - ударный коэффициент.

, (5.3.3.)

где: Uн - номинальное линейное напряжение сети, В;

Zг - полное сопротивление цепи до точки К.З., (сопротивление генератора), Ом. Zг = 4,6 Ом.

, (5.3.4.)

где: t - время затухания тока К.З.,с. Принимаем t = 0,05 с.

Та - постоянная времени затухания, с. Принимаем

Та = 0,1с.

Принимаем, что нагрузка распределена по фазам равномерно. Тогда расчетный максимальный ток равен:

, (5.3.5)

где: cosfнагр - коэффициент мощности нагрузки.

Принимаем /37/ cosfнагр = 0,9

Принимаем автоматический выключатель А3114 (на листе 5 QF1) Uн= =500В, Iан=100А, Iэр = 20 А.

Автоматический выключатель QF2 защищает GB2 от перегрузки (например при заклинивании GB1) и аккумуляторы и МПТ от коротких замыканий. Поэтому выбираем автоматический выключатель с комбини­рованым расцепителем по условиям /21,46/:

UанUн

IанIр mах

Iу1,25Iр.mах

Iм ср1,25Iпуск

где: Iу - ток уставки расцепителя, А;

Iм ср - ток отсечки расцепителя, А;

Iпуск - пусковой ток МПТ, А.

Iпуск =225 А.

Iу1,25 36 = 45 А,

Iм ср 1,25 225 = 281 А.

Принимаем автоматический выключатель А3113 Iн = 100 А; Ток

уставки расцепителя Iу = 50 А; Ток отсечки Iм ср = 4Iн = 400 А.

Выбираем аппаратуру управления /30,31/ исходя из ее назначе­ния и коммутируемых токов (таблица 5.3.1.)

Таблица 5.3.1.

Аппаратура управления.

Обозначение
Наименование Параметры Кол-во

VD1,VD6


SА1

SA2

Диод


Переключатель

Переключатель

IIном = 100А

Uном = 400В

Iном = 100А

Iном = 100А

6


1

1


, (5.3.8.)


6. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ МОНТАЖЕ И ЭКСПЛУАТАЦИИ ЭНЕРГОУСТАНОВОК НА ВИЭ

6.1.Опасности, связанные с монтажом и эксплуатацией энергоустановок на ВИЭ


Монтаж ветроэнергетической установки создает опасности, ха­рактерные при сооружении высотных мачтовых устройств. В этой свя­зи необходимо остерегаться падения самой мачты и тяжелых предме­тов. При монтаже солнечных коллекторов также возможны их падения.

Смонтированная ветроэнергетическая установка подвергается ветровым нагрузкам, поэтому существует опасность ее опрокидывания.

Кроме того энергоустановка представляет собой энергетический узел, включающий трехфазный генератор переменного тока с четы­рехпводной электрической сетью, машину постоянного тока, батарею коммутируемых аккумуляторов емкостью более 3000 Ач. Такая сово­купность электрооборудования создает естественные опасности пора­жения электрическим током и возникновение опасных в пожарном от­ношении ситуаций /7.8.9/.

Высокая емкость аккумуляторных батарей создает, кроме того, опасность взрыва водорода при зарядке и разрядке, отравление па­рами водорода и серной кислоты, опасность кислотных ожогов /10.11/.


6.2. Монтаж энергоустановок


Ветроустановка собирается на земле на двух призматических подставках в горизонтальном положении. Поворотная площадка В-ко­леса фиксируется. Установку мачты с В-колесом и электрическими машинами производится при помощи автокрана со стропальщиками /20/. На мачте оборудуются анкерные петли и лестничные металли­ческие ступеньки. При подъеме троса стропилятся за анкерные пет­ли. После подъема мачты и установки ее на фундамент, она фиксиру­ется шестью растяжками, закрепленными по три на высоте 2/5 и 2/3 от высоты мачты. Углы растяжек с осью мачты должны состовлять 40 градусов для нижнего яруса и 30 градусов для верхнего яруса, рас­тяжки должны быть разведены на 120 градусов между собой на каждом ярусе и на 60 градусов между ярусами.

После установки мачты в вертикальное положение и ее фикса­ции, она освобождается от монтажных строп и соединяется с конту­ром заземления.

Так как принята четырех проводная трехфазная сеть, то нейт­раль синхронного генератора глухо заземляется /12,33/.

После монтажа проводятся следующие измерения и испытания /33,34/.

Генератор переменного тока должен соответствовать ГОСТ 12.2.007.1-75 /13/. В соответствии с ПУЭ перед его эксплуатацией должны быть выполнены следующие мероприятия/35,34/.

Измерение сопротивления изоляции. Сопротивление изоляции должно быть:

- обмотки статора не менее 0,5 МОм, измеренное при температуре 10...30 оС мегаомметром с напряжением 1 кВ;

- обмотки ротора не менее 0,5 МОм, измеренное при тех же условиях, либо мегаомметром с напряжением 500 В. Так как ротор не явно полюсный. Допускается ввод в эксплуатацию генератора, имеюще­го сопротивление ротора 0,2 МОм при температуре 20 оС;

- возбудителя не менее 1 МОм, измеренное мегаомметром с нап­ряжением 1000В.

Измерение сопротивления постоянному току.

Сопротивление статорных обмоток различных фаз не должно отличать­ся друг от друга более, чем на 5 %, а роторной более, чем на 2 % от заводских данных.

Проверка выпускной документации. Проверяются отметки об ис­пытаниях повышенным напряжением, испытаниях на шум и вибрацию.

Машина постоянного тока должна соответствовать ГОСТ12.2.007.1-75 /13/. В соответствии с ПУЭ должны проводиться сле­дующие измерения /33/.

Сопротивление изоляции (производится мегаомметром на напряже­ние 1000 В) должно быть между обмотками и каждой обмотки относи­тельно корпуса не менее 0,5 МОм при температуре 10...30 оС.

Сопротивление обмотки возбуждения постоянному току не должно отличаться от заводских данных более, чем на 2%.

Сопротивление обмотки якоря постоянному току между коллек­торными пластинами не должно отличатся друг от друга более, чем на 10%.

Пускорегулирующая и защитная аппаратура должна соответство­вать ГОСТ 12.2.007.6-75 /14/. Сопротивление изоляции вторичных цепей со всеми присоединенными, но не включенными под напряжение, приборами должно быть не менее 1 МОм измеренное мегаомметром на напряжение 0,5-1,0 кВ /34/.

Солнечные коллекторы должны соответствовать ГОСТ12.2.006-83, и ГОСТ 12.2.007.11 /15,16/. Сопротивление постоянно­му току в обратном направлении должно отличатся от заводских дан­ных не более, чем на 10%, а отдельных коллекторов друг от друга не более, чем на 5%.

Аккумуляторные батареи должны соответствовать ГОСТ12.2.007.12-75. Перед эксплуатацией должны быть проведены следую­щие измерения /17/.

Измерение плотности электролита. Плотность электролита (с у­четом того, что аккумуляторы работают в стационарном режиме) должна быть 1,24...1,25 г/см.

Измерение температуры электролита. Температура электролита должна быть не выше 40 оС.

Измерение напряжения холостого хода на каждой банке (прово­дится нагрузочной вилкой с выключенными резисторами). Напряжение должно быть 2,2...2,3 В.

Измерение напряжения под стартерной нагрузкой (проводится нагрузочной вилкой с включенными резисторами). Напряжение должно быть не менее 1,7 В.

Заземляющее устройство проверяется в соответствии с ПУЭ /34/ и ПТЭ и ПТБ /33/.

Проверка включает:

-осмотр видимых частей заземляющего устройства (ЗУ), не должно быть видимых обрывов, надежность сварки проверяют ударом молотка;

- проверка сопротивления цепи фаза-нуль в нагрузочной сети. Расчетный ток однофазного короткого замыкания должен быть не менее 28 А, что соответствует Iк.з.(1) 1,4 Iэ.р.;

- проверка сопротивления ЗУ, сопротивление должно быть не более 4 Ом, сопротивление заземляющих проводников должно быть не более 0,5 Ом.

Электрические машины, шкаф управления и солнечные коллекторы должны соответствовать классу 01 или 1 по ГОСТ 12.2.007-75 /18/.


6.3. Эксплуатация энергоустановок


Эксплуатация энергоустановок производится в соответствии с ПТЭ и ПТБ /34/. При этом проводятся следующие периодические ме­роприятия:

- измерение сопротивления изоляции (1 раз в 4 месяца);

- измерение сопротивления ЗУ (1 раз в 3 месяца);

- измерение плотности и температуры электролита (1 раз в 6 месяцев);

- измерение напряжения аккумуляторов на холостом ходу и при стартерной нагрузке (1 раз в 6 месяцев);

- измерение напряжения солнечного коллектора (1 раз в 6 ме­сяцев при ясной погоде).

Все измерения производятся при отключенных ГПТ и МПТ и оста­новленом и застопоренном Вколесе. Кроме того проверяется напряже­ние на клеммах МПТ, работающей в генераторном режиме, и напряже­ние на клеммах ГПТ при отключенной нагрузке. Измерения проводятся 1 раз в 6 месяцев.

Измерения проводятся обслуживающей организацией или пользо­вателем. В последнем случае он должен получить третью группу допуска по электробезопасности, для чего он должен предоставить ме­дицинскую справку об отсутствии противопоказаний, указанных в до­кументе "Перечень медицинских противопоказаний к допускам на ра­боту трудящихся в целях предупреждения заболеваний, несчастных случаев и обеспечение безопасности труда по определенным видам работ" /34/. Пользователь должен быть не моложе 18 лет и перио­дически проходить проверку знаний по ПТЭ И ПТБ в соответствующей комиссии. При выдаче удостоверения о праве допуска, он должен быть ознакомлен с правилами периодической проверки и предупрежден о сроках ее проведения.

При отклонениях измеренных величин от значений, указанных в п.6.2., пользователь должен прекратить эксплуатацию энергоуста­новки и сообщить обслуживающей организации.

В процессе эксплуатации должен проводиться 1 раз в четыре месяца текущий ремонт энергоустановок, который выполняется обслу­живающей организацией. В качестве обслуживающей организации может выступать электротехническая служба хозяйства.


6.4. Защитные средства и средства оказания первой помощи.


Для защиты электрооборудования от аварийных режимов работы применяются автоматический выключатель А3114 (защита генератора переменного тока от К.З.), автоматический выключатель А3113 (за­щита машины постоянного тока от перегрузки и К.З.,защита аккуму­ляторов от К.З.), предохранитель Iв =1,5 А (защита вторичных це­пей управления от К.З.).

Для защиты человека от поражения электрическим током применяется заземляющее устройство в совокупности с вышеназванными ав­томатическими выключателями.

Для защиты энергоустановки от поражения молнией применяется молниезащита, для чего металлическая мачта ветроустановки и ме­таллический каркас солнечной установки соединяется с контуром за­земления.

Для выполнения контрольных измерений и обслуживания энерго­установок используются следующие средства и приспособления: ареометр с резиновой грушей, нагрузочная вилка с изолирующей рукоят­кой, респиратор, термометр со шкалой (0-50 оС), монтажный пояс, электроинструмент (отвертка, пассатижи) с изолирующими рукоятка­ми, мегаомметр, пищевая сода и ее 10% раствор, песок, огнетуши­тель, аптечка с установленным Минздравом набором медикаментов.

Лестница на мачте В- установки должна начинаться на высоте не менее 1,5 м, приставная стремянка должна запираться в отдель­ном помещении, что предотвратит влезание детей на мачту.

Аккумуляторы должны находиться в отдельном помещении, окра­шенном изнутри кислотостойкой краской и имеющем вытяжную шахту.

Указанные мероприятия обеспечат безопасную эксплуатацию энергоустановок на основе возобновляемых источников энергии.

7. ЭКОНОМИЧЕСКАЯ ОЦЕНКА РЕЗУЛЬТАТОВ РАБОТЫ


Экономический расчет ведется для двадцатилетнего периода - проектируемого срока службы энергоустановок. Капитальные вложе­ния по проектируемому варианту определяются по формуле / 26 /:


Кн = Св + Сс + Са + Соб + См, ( 7.1.)


где: Св, Сс6 Са - стоимость ветроустановки, солнечной ус­тановки и аккумуляторных батарей соот­ветственно, руб.;

Соб - стоимость электрооборудования, руб.;

См - стоимость монтажа, руб.

Стоимость ветроустановки с монтажом определяется по форму­ле /18/:


Св = Кд 1000= 3010003 = 90000 ( руб.)

Здесь: Кд - курс доллара США, руб.;

- мощность ветроустановки, кВт.

Стоимость солнечной установки с монтажом определяется по формуле /18/:

Сс = Кд4 = 304720 =88400 ( руб.)

Здесь: - мощность солнечной установки, Вт.

Стоимость аккумуляторов равна /35/:

Са = цn = 48015 = 7200 ( руб.)

Здесь: ц - цена аккумулятора 6СТ - 210, руб.;

n - количество аккумуляторов.

Стоимость электрооборудования и его монтажа приведена в таблице 7.1. по данным /35/.

Капитальные вложения по проектируемому варианту равны: Кн = 90000 + 88400 +7200 + 1877 + 94 = 185894 ( руб.)

Капитальные вложения по базовому варианту ( электроснабже­ние от электросети) определяются по формуле:

КБ = Стп + Слэп