Разработка эффективной системы энергоснабжения на основе ВИЭ
(5.2.6.)где:
a - отношение постоянных потерь к переменным.
Для двигателей постоянного тока параллельного возбуждения a=1...1,5 /46/. Принимаем a= 1.
(Вт)
(Вт)
Выбранный двигатель проходит по допустимому нагреву. На статическую устойчивость двигатель проверяется по условию /46/:
Мдв.мах Мс.мах (5.2.7.)
где: Мдв.мах, Мс.мах - максимальный момент двигателя и генератора соответственно, Нм.
Так как скорости вращения двигателя и генератора равны, то условие (5.2.7.) принимает вид:
, (5.2.8.)
Рдв.mах=2600 Вт (при увеличении тока возбуждения на 10%)
(Вт)
Таким образом, проверка показала, что МПТ выбрана правильно. Окончательно принимаем машину постоянного тока 2ПБВ112SУ1.
Таблица 5.2.1.
Расчет потерь мощности на нагрев
Nуч |
ti |
Pi,Вт |
Xi |
hi |
(1-hi)/hi |
DРi,Bт |
DРi*ti |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 |
531 427 465 590 652 811 1545 1999 1766 1035 1249 1535 1811 1839 1270 1298 1444 1206 831 630 612 |
0,29 0,24 0,26 0,33 0,36 0,45 0,85 1,11 0,98 0,57 0,69 0,85 1,00 1,02 0,70 0,72 0,80 0,67 0,46 0,35 0,34 |
0,68 0,64 0,66 0,70 0,71 0,75 0,80 0,80 0,80 0,77 0,79 0,80 0,80 0,80 0,79 0,79 0,80 0,79 0,75 0,-0 0,70 |
0,47 0,56 0,51 0,42 0,40 0,33 0,25 0,25 0,25 0,30 0,26 0,25 0,25 0,25 0,26 0,26 0,25 0,26 0,33 0,42 0,42 |
249 239 237 247 260 267 386 500 441 310 324 383 452 459 330 337 361 313 274 264 257 |
249 717 237 247 260 267 386 1000 441 310 324 383 452 459 330 337 361 313 274 264 257 |
5.2.Разработка принципиальной схемы электроснабжения.
Блок-схема системы электроснабжения представлена на листе 5. Система работает следующим образом. При наличии ветра работает В-установка, которая через муфту вращает МПТ и ГПТ. МПТ работает как генератор, который заряжает АБ через коммутатор режимов КР. ГПТ подает напряжение на нагрузку. С-установка через коммутатор режимов КР также работает на зарядку АБ.
При отсутствии ветра или при сильном ветре В-установка останавливается и с помощью муфты отсоединяется от МПТ и ГПТ. АБ через КР подает питание на МПТ, которая работает как двигатель, вращающий ГПТ. Таким образом ГПТ в отсутствии ветра вращается от МПТ, получающей электроэнергию от АБ. Так как МПТ потребляет ток, превышающий ток от С-установки, то одновременная подзарядка АБ и их разрядка на МПТ недопустима. Для этого в системе предусмотрен КР, который подключает к С-установке только часть АБ, не задействованной на МПТ, и служит для сохранения вращения МПТ в режиме генератора и двигателя.
Соответствующая блок-схеме принципиальная схема приведенна на листе 5. Схема работает следующим образом.
При вращении под действием ветра ветроколеса переключатель SAI находится в положении 1(генераторное).В этом случае GB2(машина постоянного тока) работает в режиме генератора и через диодный мост VDI…VD6 заряжает 1/2 аккумуляторных батарей(например GB3). Во вращение от ветроколеса приводится и GB1 (генератор переменного тока), который подает напряжение к потребителям.
При остановке ветроколеса, переключатель SA1 переходит в положение 2(двигательное) и через диодный мост VD1…VD6 напряжение с аккумуляторных батарей GB3 подается на GB2, который в этом случае работает в двигательном режиме и вращает GB1 вместо ветроколеса..
В схеме предусмотрены:
- сигнализация напряжения на нагрузке и в цепях управления (HL1, HL2);
- защита силовой цепи (QF1, QF2);
- отсоединение электрических машин для ремонтных нужд (QS1).
5.3. Выбор аппаратуры управления и защиты.
Автоматический выключатель QF1 (см. рис. 5.2.2.) предназначен для защитного отключения генератора переменного тока GB1 при коротком замыкании в цепи нагрузки и выбирается из условий /21,46/:
Uан Uн;
Iан Iр.mах; (5.3.1.)
Iа.откл Iк(3).
где: Uан, Uн - номинальное напряжение автоматического выключателя и сети соответственно, В;
Iан,, Iр.mах - соответственно номинальный ток автоматического выключателя и максимальный рабочий ток в сети, А;
Iа.откл - максимальное значение тока короткого замыкания, которое автомат способен отключить, оставаясь в работоспособном положении, А;
Iк(3) - наибольший ток трехфазного короткого замыкания А.
Ток трехфазного короткого замыкания при питании от автономной электростанции определяется по формуле /21/:
, (5.3.2.)
где: - действующее значение периодической составляющей тока К.З. за первый период, А;
kу - ударный коэффициент.
, (5.3.3.)
где: Uн - номинальное линейное напряжение сети, В;
Zг - полное сопротивление цепи до точки К.З., (сопротивление генератора), Ом. Zг = 4,6 Ом.
, (5.3.4.)
где: t - время затухания тока К.З.,с. Принимаем t = 0,05 с.
Та - постоянная времени затухания, с. Принимаем
Та = 0,1с.
Принимаем, что нагрузка распределена по фазам равномерно. Тогда расчетный максимальный ток равен:
, (5.3.5)
где: cosfнагр - коэффициент мощности нагрузки.
Принимаем /37/ cosfнагр = 0,9
Принимаем автоматический выключатель А3114 (на листе 5 QF1) Uн= =500В, Iан=100А, Iэр = 20 А.
Автоматический выключатель QF2 защищает GB2 от перегрузки (например при заклинивании GB1) и аккумуляторы и МПТ от коротких замыканий. Поэтому выбираем автоматический выключатель с комбинированым расцепителем по условиям /21,46/:
UанUн
IанIр mах
Iу1,25Iр.mах
Iм ср1,25Iпуск
где: Iу - ток уставки расцепителя, А;
Iм ср - ток отсечки расцепителя, А;
Iпуск - пусковой ток МПТ, А.
Iпуск =225 А.
Iу1,25 36 = 45 А,
Iм ср 1,25 225 = 281 А.
Принимаем автоматический выключатель А3113 Iн = 100 А; Ток
уставки расцепителя Iу = 50 А; Ток отсечки Iм ср = 4Iн = 400 А.
Выбираем аппаратуру управления /30,31/ исходя из ее назначения и коммутируемых токов (таблица 5.3.1.)
Таблица 5.3.1.
Аппаратура управления.
-
Обозначение
Наименование Параметры Кол-во VD1,VD6
SА1
SA2
Диод
Переключатель
Переключатель
IIном = 100А
Uном = 400В
Iном = 100А
Iном = 100А
6
1
1
, (5.3.8.)
6. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ МОНТАЖЕ И ЭКСПЛУАТАЦИИ ЭНЕРГОУСТАНОВОК НА ВИЭ
6.1.Опасности, связанные с монтажом и эксплуатацией энергоустановок на ВИЭ
Монтаж ветроэнергетической установки создает опасности, характерные при сооружении высотных мачтовых устройств. В этой связи необходимо остерегаться падения самой мачты и тяжелых предметов. При монтаже солнечных коллекторов также возможны их падения.
Смонтированная ветроэнергетическая установка подвергается ветровым нагрузкам, поэтому существует опасность ее опрокидывания.
Кроме того энергоустановка представляет собой энергетический узел, включающий трехфазный генератор переменного тока с четырехпводной электрической сетью, машину постоянного тока, батарею коммутируемых аккумуляторов емкостью более 3000 Ач. Такая совокупность электрооборудования создает естественные опасности поражения электрическим током и возникновение опасных в пожарном отношении ситуаций /7.8.9/.
Высокая емкость аккумуляторных батарей создает, кроме того, опасность взрыва водорода при зарядке и разрядке, отравление парами водорода и серной кислоты, опасность кислотных ожогов /10.11/.
6.2. Монтаж энергоустановок
Ветроустановка собирается на земле на двух призматических подставках в горизонтальном положении. Поворотная площадка В-колеса фиксируется. Установку мачты с В-колесом и электрическими машинами производится при помощи автокрана со стропальщиками /20/. На мачте оборудуются анкерные петли и лестничные металлические ступеньки. При подъеме троса стропилятся за анкерные петли. После подъема мачты и установки ее на фундамент, она фиксируется шестью растяжками, закрепленными по три на высоте 2/5 и 2/3 от высоты мачты. Углы растяжек с осью мачты должны состовлять 40 градусов для нижнего яруса и 30 градусов для верхнего яруса, растяжки должны быть разведены на 120 градусов между собой на каждом ярусе и на 60 градусов между ярусами.
После установки мачты в вертикальное положение и ее фиксации, она освобождается от монтажных строп и соединяется с контуром заземления.
Так как принята четырех проводная трехфазная сеть, то нейтраль синхронного генератора глухо заземляется /12,33/.
После монтажа проводятся следующие измерения и испытания /33,34/.
Генератор переменного тока должен соответствовать ГОСТ 12.2.007.1-75 /13/. В соответствии с ПУЭ перед его эксплуатацией должны быть выполнены следующие мероприятия/35,34/.
Измерение сопротивления изоляции. Сопротивление изоляции должно быть:
- обмотки статора не менее 0,5 МОм, измеренное при температуре 10...30 оС мегаомметром с напряжением 1 кВ;
- обмотки ротора не менее 0,5 МОм, измеренное при тех же условиях, либо мегаомметром с напряжением 500 В. Так как ротор не явно полюсный. Допускается ввод в эксплуатацию генератора, имеющего сопротивление ротора 0,2 МОм при температуре 20 оС;
- возбудителя не менее 1 МОм, измеренное мегаомметром с напряжением 1000В.
Измерение сопротивления постоянному току.
Сопротивление статорных обмоток различных фаз не должно отличаться друг от друга более, чем на 5 %, а роторной более, чем на 2 % от заводских данных.
Проверка выпускной документации. Проверяются отметки об испытаниях повышенным напряжением, испытаниях на шум и вибрацию.
Машина постоянного тока должна соответствовать ГОСТ12.2.007.1-75 /13/. В соответствии с ПУЭ должны проводиться следующие измерения /33/.
Сопротивление изоляции (производится мегаомметром на напряжение 1000 В) должно быть между обмотками и каждой обмотки относительно корпуса не менее 0,5 МОм при температуре 10...30 оС.
Сопротивление обмотки возбуждения постоянному току не должно отличаться от заводских данных более, чем на 2%.
Сопротивление обмотки якоря постоянному току между коллекторными пластинами не должно отличатся друг от друга более, чем на 10%.
Пускорегулирующая и защитная аппаратура должна соответствовать ГОСТ 12.2.007.6-75 /14/. Сопротивление изоляции вторичных цепей со всеми присоединенными, но не включенными под напряжение, приборами должно быть не менее 1 МОм измеренное мегаомметром на напряжение 0,5-1,0 кВ /34/.
Солнечные коллекторы должны соответствовать ГОСТ12.2.006-83, и ГОСТ 12.2.007.11 /15,16/. Сопротивление постоянному току в обратном направлении должно отличатся от заводских данных не более, чем на 10%, а отдельных коллекторов друг от друга не более, чем на 5%.
Аккумуляторные батареи должны соответствовать ГОСТ12.2.007.12-75. Перед эксплуатацией должны быть проведены следующие измерения /17/.
Измерение плотности электролита. Плотность электролита (с учетом того, что аккумуляторы работают в стационарном режиме) должна быть 1,24...1,25 г/см.
Измерение температуры электролита. Температура электролита должна быть не выше 40 оС.
Измерение напряжения холостого хода на каждой банке (проводится нагрузочной вилкой с выключенными резисторами). Напряжение должно быть 2,2...2,3 В.
Измерение напряжения под стартерной нагрузкой (проводится нагрузочной вилкой с включенными резисторами). Напряжение должно быть не менее 1,7 В.
Заземляющее устройство проверяется в соответствии с ПУЭ /34/ и ПТЭ и ПТБ /33/.
Проверка включает:
-осмотр видимых частей заземляющего устройства (ЗУ), не должно быть видимых обрывов, надежность сварки проверяют ударом молотка;
- проверка сопротивления цепи фаза-нуль в нагрузочной сети. Расчетный ток однофазного короткого замыкания должен быть не менее 28 А, что соответствует Iк.з.(1) 1,4 Iэ.р.;
- проверка сопротивления ЗУ, сопротивление должно быть не более 4 Ом, сопротивление заземляющих проводников должно быть не более 0,5 Ом.
Электрические машины, шкаф управления и солнечные коллекторы должны соответствовать классу 01 или 1 по ГОСТ 12.2.007-75 /18/.
6.3. Эксплуатация энергоустановок
Эксплуатация энергоустановок производится в соответствии с ПТЭ и ПТБ /34/. При этом проводятся следующие периодические мероприятия:
- измерение сопротивления изоляции (1 раз в 4 месяца);
- измерение сопротивления ЗУ (1 раз в 3 месяца);
- измерение плотности и температуры электролита (1 раз в 6 месяцев);
- измерение напряжения аккумуляторов на холостом ходу и при стартерной нагрузке (1 раз в 6 месяцев);
- измерение напряжения солнечного коллектора (1 раз в 6 месяцев при ясной погоде).
Все измерения производятся при отключенных ГПТ и МПТ и остановленом и застопоренном Вколесе. Кроме того проверяется напряжение на клеммах МПТ, работающей в генераторном режиме, и напряжение на клеммах ГПТ при отключенной нагрузке. Измерения проводятся 1 раз в 6 месяцев.
Измерения проводятся обслуживающей организацией или пользователем. В последнем случае он должен получить третью группу допуска по электробезопасности, для чего он должен предоставить медицинскую справку об отсутствии противопоказаний, указанных в документе "Перечень медицинских противопоказаний к допускам на работу трудящихся в целях предупреждения заболеваний, несчастных случаев и обеспечение безопасности труда по определенным видам работ" /34/. Пользователь должен быть не моложе 18 лет и периодически проходить проверку знаний по ПТЭ И ПТБ в соответствующей комиссии. При выдаче удостоверения о праве допуска, он должен быть ознакомлен с правилами периодической проверки и предупрежден о сроках ее проведения.
При отклонениях измеренных величин от значений, указанных в п.6.2., пользователь должен прекратить эксплуатацию энергоустановки и сообщить обслуживающей организации.
В процессе эксплуатации должен проводиться 1 раз в четыре месяца текущий ремонт энергоустановок, который выполняется обслуживающей организацией. В качестве обслуживающей организации может выступать электротехническая служба хозяйства.
6.4. Защитные средства и средства оказания первой помощи.
Для защиты электрооборудования от аварийных режимов работы применяются автоматический выключатель А3114 (защита генератора переменного тока от К.З.), автоматический выключатель А3113 (защита машины постоянного тока от перегрузки и К.З.,защита аккумуляторов от К.З.), предохранитель Iв =1,5 А (защита вторичных цепей управления от К.З.).
Для защиты человека от поражения электрическим током применяется заземляющее устройство в совокупности с вышеназванными автоматическими выключателями.
Для защиты энергоустановки от поражения молнией применяется молниезащита, для чего металлическая мачта ветроустановки и металлический каркас солнечной установки соединяется с контуром заземления.
Для выполнения контрольных измерений и обслуживания энергоустановок используются следующие средства и приспособления: ареометр с резиновой грушей, нагрузочная вилка с изолирующей рукояткой, респиратор, термометр со шкалой (0-50 оС), монтажный пояс, электроинструмент (отвертка, пассатижи) с изолирующими рукоятками, мегаомметр, пищевая сода и ее 10% раствор, песок, огнетушитель, аптечка с установленным Минздравом набором медикаментов.
Лестница на мачте В- установки должна начинаться на высоте не менее 1,5 м, приставная стремянка должна запираться в отдельном помещении, что предотвратит влезание детей на мачту.
Аккумуляторы должны находиться в отдельном помещении, окрашенном изнутри кислотостойкой краской и имеющем вытяжную шахту.
Указанные мероприятия обеспечат безопасную эксплуатацию энергоустановок на основе возобновляемых источников энергии.
7. ЭКОНОМИЧЕСКАЯ ОЦЕНКА РЕЗУЛЬТАТОВ РАБОТЫ
Экономический расчет ведется для двадцатилетнего периода - проектируемого срока службы энергоустановок. Капитальные вложения по проектируемому варианту определяются по формуле / 26 /:
Кн = Св + Сс + Са + Соб + См, ( 7.1.)
где: Св, Сс6 Са - стоимость ветроустановки, солнечной установки и аккумуляторных батарей соответственно, руб.;
Соб - стоимость электрооборудования, руб.;
См - стоимость монтажа, руб.
Стоимость ветроустановки с монтажом определяется по формуле /18/:
Св = Кд 1000Nв = 3010003 = 90000 ( руб.)
Здесь: Кд - курс доллара США, руб.;
Nв - мощность ветроустановки, кВт.
Стоимость солнечной установки с монтажом определяется по формуле /18/:
Сс = Кд4Nс = 304720 =88400 ( руб.)
Здесь: Nс - мощность солнечной установки, Вт.
Стоимость аккумуляторов равна /35/:
Са = цn = 48015 = 7200 ( руб.)
Здесь: ц - цена аккумулятора 6СТ - 210, руб.;
n - количество аккумуляторов.
Стоимость электрооборудования и его монтажа приведена в таблице 7.1. по данным /35/.
Капитальные вложения по проектируемому варианту равны: Кн = 90000 + 88400 +7200 + 1877 + 94 = 185894 ( руб.)
Капитальные вложения по базовому варианту ( электроснабжение от электросети) определяются по формуле:
КБ = Стп + Слэп