Алгебра и Начало анализа
border="0" />, , , выражаются через значения sin , cos , tg и ctg .Все формулы приведения можно свести в следующую таблицу:
Функция |
Аргумент |
|||||||
sin |
cos |
cos |
sin |
-sin |
-cos |
-cos |
-sin |
sin |
cos |
sin |
-sin |
-cos |
-cos |
-sin |
sin |
cos |
cos |
tg |
ctg |
-ctg |
-tg |
tg |
ctg |
-ctg |
-tg |
tg |
ctg |
tg |
-tg |
-ctg |
ctg |
tg |
-tg |
-ctg |
ctg |
Для облегчения запоминания приведенных формул нужно использовать следующие правила:
a) при переходе от функций углов , к функциям угла название функции изменяют: синус на косинус, тангенс на котангенс и наоборот;
при переходе от функций углов , к функциям угла название функции сохраняют;
б) считая острым углом (т. е. ), перед функцией угла ставят такой знак, какой имеет приводимая функ-ция углов , , .
Все
вышеприведенные
формулы можно
получить, пользуясь
следующим
правилом:
Любая
тригонометрическая
функция угла
90°n +
по
абсолютной
величине равна
той же функции
угла
,
если число n -
четное, и дополнительной
функции, если
число n - нечетное.
При этом, если
функция угла
90°n +
.
положительна,
когда
-
острый угол,
то знаки обеих
функций одинаковы,
если отрицательна,
то различны.
№ 16
Формулы косинуса суммы и разности двух аргументов:
Рис.1 Рис.2
Повернем радиус ОА, равный R, около точки О на угол и на угол (рис.1). Получим радиусы ОВ и ОС. Найдем скалярное произведение векторов и . Пусть координаты точки В равны х1 и y1, координаты точки С равны х2 и y2. Эти же координаты имеют соответственно и векторы и . По определению скалярного произведения векторов:
= х1х2 + y1y2. (1)
Выразим скалярное произведение через тригонометрические функции углов и . Из определения косинуса и синуса следует, что
х1 = R cos , y1 = R sin , х2 = R cos , y2 = R sin .
Подставив значения х1, х2, y1, y2 в правую часть равенства (1), получим:
= R2cos cos + R2sin sin = R2(cos cos + sin sin).
С другой стороны, по теореме о скалярном произведении векторовимеем:
= cos BOC = R2cos BOC.
Угол ВОС между векторами и может быть равен - (рис.1), - ( - ) (рис.2) либо может отличаться от этих значений на целое число оборотов. В любом из этих случаев cos BOC = cos ( - ). Поэтому
= R2 cos ( - ).
Т.к. равно также R2(cos cos + sin sin), то
cos( - ) = cos cos + sin sin.
cos( + ) = cos( - (-)) = cos cos(-) + sin sin(-) = cos cos - sin sin.
Значит,
cos( + ) = cos cos - sin sin.Формулы синуса суммы и разности двух аргументов:
sin( + ) = cos( /2 - ( + )) = cos(( /2 - ) - ) = cos( /2 - ) cos + sin( /2 - ) sin = sin cos + cos sin.
Значит,
sin( + ) = sin cos + cos sin.
sin( - ) = sin( + (-)) = sin cos(-) + cos sin(-) = sin cos - cos sin.
Значит,
sin( - ) = sin cos - cos sin.
№ 17
Формулы двойных углов
Формулы
сложения позволяют
выразить sin 2,
cos 2,
tg 2,
ctg 2
через тригонометрические
функции угла
.
Положим
в
формулах
sin(
+
)
= sin
cos
+ cos
sin
,
cos(
+
)
= cos
cos
- sin
sin
,
,
.
равным
.
Получим тождества:
sin
2
= 2 sin
cos
;
cos
2
= cos2
-
sin2
=
1 - sin2
=
2 cos2
-
1;
;
.
№ 18
Формулы половинного аргумента
Выразив правую часть формулы cos 2 = cos2 - sin2 через одну тригонометрическую функцию (синус или косинус), придем к соотношениям
cos 2 = 1 - sin2 , cos 2 = 2 cos2 - 1.
Если в данных соотношениях положить = /2, то получим:
cos = 1 - 2 sin2 /2, cos 2 = 2 cos2 /2 - 1. (1)Из формул (1) следует, что
(2), (3).Разделив почленно равенство (2) на равенство (3), получим
(4).В формулах (2), (3) и (4) знак перед радикалом зависит от того, в какой координатной четверти находится угол /2.
Полезно знать следующую формулу:
.
№ 19
Формулы суммы и разности синусов, косинусов
Сумму
и разность
синусов или
косинусов можно
представить
в виде произведения
тригонометрических
функций. Формулы,
на которых
основано такое
преобразование,
могут быть
получены из
формул сложения.
Чтобы
представить
в виде произведения
сумму sin
+
sin