Теория относительности. Эволюция и структурная организация Вселенной

насчитываются миллиарды звезд. Предположения о множественности галактик высказывались еще в середине VIIIв., но доказательства их существования появились только в первой четверти XXв.

Галактики образуют метагалактику (Вселенную), размеры которой оцениваются в 15–20млрд световых лет, а возраст – в 13–15млрд лет. Некоторые галактики излучают радиоволны с потрясающей мощностью. Предполагают, что в них существует магнитное поле, тормозящее движение находящихся там элементарных частиц, а это вызывает радиоизлучение.

В 60-х гг. XXв. были открыты квазары – квазизвездные радиоисточники –самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Природа квазаров пока неясна. Возможно, квазары представляют собой ядра новых галактик, а значит, процесс образования галактик продолжается и поныне.

Галактики имеют свой центр (ядро), они различаются по форме, в соответствии с которой их классифицируют как спиральные, эллиптические, шаровые, неправильные Вследствие удаленности галактик свет от входящих в них миллиардов звезд сливается, создавая впечатление светящегося туманного вещества, поэтому галактики получили название туманностей.

Ближайшая к нам большая галактика – наблюдаемая в созвездии Андромеды туманность – Туманность Андромеды. Это спиральная галактика, находящаяся от на нас расстоянии около 2млн световых лет. Она была открыта в 1917г. как первый внегалактический объект.

В 1923г. путем спектрального анализа в этом объекте были обнаружены звезды и таким образом доказана его принадлежность к другой галактике. Туманность Андромеды имеет спутники эллиптической или шаровидной формы – более мелкие галактики. Еще одна спиральная галактика находится в созвездии Треугольника. По размерам она меньше Туманности Андромеды и не имеет спутников.

Галактики образуют группы галактик. Таких групп во Вселенной множество, они могут быть малыми и большими. Так, огромное облако, наблюдаемое в созвездии Девы, состоит из сотен галактик. В состав одной из групп – Местного скопления –входят спиральные галактики вместе со своими спутниками: Туманность Андромеды, галактика в созвездии Треугольника и наша Галактика.

Пылевые туманности –облака в межзвездном пространстве, образованные очень мелкой космической пылью.

Космическая пыль препятствует прохождению света от звезд, поглощая его. В большей степени поглощается коротковолновая, сине-зеленая часть спектра, поэтому свет звезд становится более желтоватым и даже красноватым. Космическая пыль является существенной помехой для исследований, поскольку она искажает свет звезд, ослабляет их блеск, а более далекие из них делает совсем невидимыми. Полагают, что в малой доле космическая пыль образуется от столкновения и разрушения мелких твердых тел, но в своей основной массе она возникает, вероятно, вследствие сгущения межзвездного газа.

Межзвездный газ был обнаружен по линиям поглощения в спектрах звезд. В его состав входит преимущественно водород, в меньшей степени – гелий; содержание азота и других легких газов небольшое. Межзвездный газ в крайне низких концентрациях имеется в большей части межзвездного пространства, а в отдельных местах образует скопления – газовые туманности Считают, что газ в туманностях частично является остатком тех газов, из которых когда-то возникли звезды, а также возникают и теперь: он выбрасывается звездами. В местах скопления газа может содержаться значительное количество космической пыли – это газово-пылевые туманности.

Газовые и газово-пылевые туманности благодаря их свечению изучают с помощью астрономических приборов. Свечение газов в крупных газовых туманностях можно наблюдать потому, что толщина их огромна, а общая масса составляет от нескольких десятков до сотен тысяч масс Солнца. Газовые туманности бывают разных размеров и различной, чаще неправильной, формы. Туманности правильной, округлой формы – небольшие. Их называют планетарными.

В отличие от крупных газовых туманностей масса планетарных туманностей очень мала: она составляет десятые и даже сотые доли массы Солнца. В центре каждой такой туманности имеется ядро – небольшая звездочка. Полагают, что это самые горячие из звезд, поскольку их излучение заставляет светиться планетарную туманность. Планетарные туманности образуются из газов, выделяемых звездой. Они недолговечны, поскольку медленно, со скоростью нескольких километров в секунду, расширяются в пространстве и со временем рассеиваются. Согласно расчетам, планетарные газовые туманности могут быть видимыми около 10тыс. лет.

Две туманности, наблюдаемые в южном полушарии неба, представляют собой галактики неправильной формы. Это Большое и Малое Магеллановы Облака –спутники нашей Галактики. Расстояние до них оценивается в 120тыс. световых лет, а размеры этих галактик составляют 26 и 17тыс. световых лет. По данным исследований, они состоят из звезд всевозможных типов, а также из газовых и пылевых туманностей. В них есть рассеянные и шаровые звездные скопления. Наша Галактика по форме очень похожа на Туманность Андромеды, обе имеют спутники. По размерам наша Галактика несколько меньше.

Наша Галактика называется Млечный Путь. Млечный Путь опоясывает все небо как гигантская светящаяся лента. Это довольно большая галактика, имеющая диаметр около 100тыс. свет. лет и включающая в себя более 100млрд звезд, в том числе Солнце. Полная масса Галактики равна 150млрд солнечных масс. Более яркие, близкие звезды расположены тем гуще, чем они ближе к средней линии Млечного Пути. Среднюю линию Млечного Пути называют галактическим экватором. Плоскость галактического экватора – это плоскость симметрии нашей звездной системы.

Звездные скопления, звезды, газовые туманности, облака космической пыли – 95% массы Галактики – сосредоточены в основном в районе этой плоскости. Только шаровые звездные скопления и звезды некоторых типов не подчиняются этому закону: они заполняют сферический объем, концентрируясь со всех сторон к центру Галактики. На долю сферической составляющей приходится около 5% вещества Галактики.

Таким образом, большая часть звезд нашей Галактики сосредоточена в гигантском "диске" толщиной около 1500 световых лет. Наша Солнечная система находится очень близко к галактической плоскости, в которой звезды расположены наиболее тесно.

Из-за облаков пыли, ослабляющих свет далеких звезд, очень трудно выяснить подробности строения Галактики. Установлено, что Наша Галактика имеет спиральное строение. Из ее ядра выходят две (возможно, более) спиральные ветви. Они состоят из звезд, газовых и пылевых туманностей и закручиваются вокруг ядра. Расположение спиральных ветвей точно пока не выяснено, но Солнце находится между ними, а самые горячие и яркие звезды группируются в звездных облаках, непосредственно образующих спиральные ветви.

Много неясного связано с ядром Галактики. Его линейные размеры оценивают приблизительно в 4000 световых лет. Ядро является источником очень мощного излучения. Однако на звездном небе ядро Галактики не видно, поскольку заслонено облаками космической пыли, через которые его свет не доходит до нас. Ядро можно наблюдать, только применяя особые способы фотографирования. Вокруг ядра Галактики все звезды вращаются с разной скоростью.

Скорость движения Солнечной системы вокруг центра Галактики – около 250км/с. На один оборот ей требуется примерно 200млн лет. Расстояние от Солнца до центра Галактики – около 30тыс. световых лет, а до ее края – несколько меньше. Чем ближе к краю Галактики, тем разреженнее звезды.

Свет всех далеких и слабых звезд сливается для нас в сплошное кольцо Млечного Пути. Предполагают, что вокруг многих звезд должны быть планетные системы. Даже если только на тысячу звезд приходится одна обитаемая планета, то и тогда во всей Галактике таких планет должно быть 100 миллионов.


Вопрос №3. Что представляет собой процесс фотосинтеза? Сравните клеточное дыхание и фотосинтез.


Фотосинтез – это процесс, от которого зависит вся жизнь на Земле. Он происходит только в растениях. В ходе фотосинтеза растение вырабатывает из неорганических веществ необходимые для всего живого органические вещества. Диоксид углерода, содержащийся в воздухе, проникает в лист через особые отверстия в эпидермисе листа, которые называют устьицами; вода и минеральные вещества поступают из почвы в корни и отсюда транспортируются к листьям по проводящей системе растения. Энергию, необходимую для синтеза органических веществ из неорганических, поставляет Солнце; эта энергия поглощается пигментами растений, главным образом хлорофиллом. В клетке синтез органических веществ протекает в хлоропластах, которые содержат хлорофилл. Свободный кислород, также образующийся в процессе фотосинтеза, выделяется в атмосферу.

Воснове фотосинтеза лежит превращение электромагнитной энергии света вхимическую энергию. Эта энергия, вконце концов, дает возможность превращать диоксид углерода вуглеводы идругие органические соединения свыделением кислорода.

Процесс фотосинтеза


Фотосинтез, являющийся одним из самых распространенных процессов на Земле, обуславливает природные круговороты углерода, кислорода и других элементов и обеспечивает материальную и энергетическую основу жизни на нашей планете.

Ежегодно в результате фотосинтеза в виде органического вещества связывается около 8·1010 т углерода, образуется до 1011 т целлюлозы. Благодаря фотосинтезу растения суши образуют около 1,8·1011 т сухой биомассы в год; примерно такое же количество биомассы растений образуется ежегодно в Мировом океане. Тропический лес вносит до 29% в общую продукцию фотосинтеза суши, а вклад лесов всех типов составляет 68%. Фотосинтез является единственным источником атмосферного кислорода.

Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом (древесина, уголь, нефть), волокнами (целлюлоза) и бесчисленными полезными химическими соединениями. Из диоксида углерода и воды, связанных из воздуха входе фотосинтеза, образуется около 90-95% сухого веса урожая. Остальные 5-10% приходятся на минеральные соли и азот, полученные из почвы.

Человек использует около 7%продуктов фотосинтеза в пищу, в качестве корма для животных и в виде топлива и строительных материалов.

Процесс фотосинтеза является аккумулированием энергии в клетке, а процесс клеточного дыхания - окисления образованной при фотосинтезе глюкозы является обратным к фотосинтезу выделением энергии. При окислении высвобождается энергия разрываемых химических связей в углеводородах.

Сходство: оба процесса снабжают клетку энергией (АТФ), идут в несколько стадий.


Различия

Признак Фотосинтез Клеточное дыхание
Используемые вещества углекислый газ и вода глюкоза и другие органические вещества, кислород
Цель процесса синтез глюкозы выделение АТФ
Превращение энергии энергия света ® энергия химических связей глюкозы энергия химических связей глюкозы ® энергия макроэргических связей АТФ
Место образования АТФ хлоропласты митохондрии
Важнейшие этапы процесса световая и темновая фазы (цикл Кальвина) анаэробный (гликолиз) и аэробный (цикл Кребса) этапы
Отношение к свету идет только на свету свет не нужен
Конечные продукты глюкоза и кислород углекислый газ и вода
Суммарное уравнение 6Н2О+6СО2+ энергия света ® С6Н12О6+ 6О2 С6Н12О6+6О2® 6Н2О +6СО2 + 38АТФ

Список использованной литературы


Аистов И. А., Голиков П. А., Зайцев В. В. Концепция современного естествознания.– СПб.: Питер, 2006.

Аруцев А.А., Ермолаев Б.В., Кутателадзе И.О., Слуцкий М.С. Концепции современного естествознания. Учебное пособие. – М.: Высшее образование, 2006.

Дубнищева Т.Я. Концепции современного естествознания: учеб. пособие для студ. вузов -6-е изд., испр. и доп. — М.: Издательский центр "Академия", 2006.

Концепции современного естествознания./Под ред. Михайлова Л.А.-СпБ, Питер, 2009

Садохин А. П. Концепции современного естествознания.– М.: Омега, 2007.

Тимофеев-Ресовский Н. В., Яблоков А. В., Воронцов Н. Н. Краткий очерк теории эволюции.– М., 2006.

Федосин С.Г. Теории физики и бесконечная вложенность материи.- Пермь, 2009