Разработка четырехтактного автомобильного двигателя

первой до последней шейки в зависимости от угла поворота. Последний столбец таблицы представляет собой изменение полного (суммарного) момента на выходе из двигателя. Моменты на промежуточных шейках отличается от полного, как по величине, так и по направлению.

Расчет тангенциальных сил (а следовательно и моментов) для V-образного двигателя представлен в табл. 2.2.

Изменение набегающих моментов представлено в табл. 2.3. и 2.4.


Таблица 2.2. Расчет тангенцальных сил для V-образного двигателя (Н)

α T1 T5 T1,5 T2 T6 T2,6 T3 T7 T3,7 T4 T8 T4,8
0 0,00 -2944,51 -2944,51 8550,25 0,00 8550,25 -3410,46 0,00 -3410,46 0,00 2771,20 2771,20
30 -6688,22 3747,94 -2940,28 7740,68 7788,60 15529,28 2165,32 -2838,40 -673,08 -3052,66 4865,29 1812,64
60 -3919,51 6580,43 2660,92 3885,49 6599,79 10485,28 3603,56 -5026,85 -1423,28 -5074,00 2820,50 -2253,49
90 2771,20 0,00 2771,20 0,00 8550,25 8550,25 0,00 -3410,46 -3410,46 -2944,51 0,00 -2944,51
120 4865,29 -6688,22 -1822,93 -3052,66 7740,68 4688,03 7788,60 2165,32 9953,92 3747,94 -2838,40 909,54
150 2820,50 -3919,51 -1099,00 -5074,00 3885,49 -1188,50 6599,79 3603,56 10203,35 6580,43 -5026,85 1553,58
180 0,00 2771,20 2771,20 -2944,51 0,00 -2944,51 8550,25 0,00 8550,25 0,00 -3410,46 -3410,46
210 -2838,40 4865,29 2026,90 3747,94 -3052,66 695,28 7740,68 7788,60 15529,28 -6688,22 2165,32 -4522,90
240 -5026,85 2820,50 -2206,34 6580,43 -5074,00 1506,43 3885,49 6599,79 10485,28 -3919,51 3603,56 -315,95
270 -3410,46 0,00 -3410,46 0,00 -2944,51 -2944,51 0,00 8550,25 8550,25 2771,20 0,00 2771,20
300 2165,32 -2838,40 -673,08 -6688,22 3747,94 -2940,28 -3052,66 7740,68 4688,03 4865,29 7788,60 12653,89
330 3603,56 -5026,85 -1423,28 -3919,51 6580,43 2660,92 -5074,00 3885,49 -1188,50 2820,50 6599,79 9420,29
360 0,00 -3410,46 -3410,46 2771,20 0,00 2771,20 -2944,51 0,00 -2944,51 0,00 8550,25 8550,25
390 7788,60 2165,32 9953,92 4865,29 -6688,22 -1822,93 3747,94 -3052,66 695,28 -2838,40 7740,68 4902,29
420 6599,79 3603,56 10203,35 2820,50 -3919,51 -1099,00 6580,43 -5074,00 1506,43 -5026,85 3885,49 -1141,35
450 8550,25 0,00 8550,25 0,00 2771,20 2771,20 0,00 -2944,51 -2944,51 -3410,46 0,00 -3410,46
480 7740,68 7788,60 15529,28 -2838,40 4865,29 2026,90 -6688,22 3747,94 -2940,28 2165,32 -3052,66 -887,34
510 3885,49 6599,79 10485,28 -5026,85 2820,50 -2206,34 -3919,51 6580,43 2660,92 3603,56 -5074,00 -1470,43
540 0,00 8550,25 8550,25 -3410,46 0,00 -3410,46 2771,20 0,00 2771,20 0,00 -2944,51 -2944,51
570 -3052,66 7740,68 4688,03 2165,32 -2838,40 -673,08 4865,29 -6688,22 -1822,93 7788,60 3747,94 11536,53
600 -5074,00 3885,49 -1188,50 3603,56 -5026,85 -1423,28 2820,50 -3919,51 -1099,00 6599,79 6580,43 13180,21
630 -2944,51 0,00 -2944,51 0,00 -3410,46 -3410,46 0,00 2771,20 2771,20 8550,25 0,00 8550,25
660 3747,94 -3052,66 695,28 7788,60 2165,32 9953,92 -2838,40 4865,29 2026,90 7740,68 -6688,22 1052,46
690 6580,43 -5074,00 1506,43 6599,79 3603,56 10203,35 -5026,85 2820,50 -2206,34 3885,49 -3919,51 -34,01
720 0,00 -2944,51 -2944,51 8550,25 0,00 8550,25 -3410,46 0,00 -3410,46 0,00 2771,20 2771,20

Таблица 2.3. Таблица набегающих моментов на шатунные шейки (Н)

α Т1,5 Т2,6/2 Т1,5+Т2,6/2 Т3,7/2 Т1,5+Т2,6+ +Т3,7/2 Т4,8/2

Т1,5+Т2,6+

+Т3,7+Т4,8/2

0 0 -2944,51 4275,12 1330,61 -1705,23 3900,50 1385,60
30 30 -2940,28 7764,64 4824,36 -336,54 12252,46 906,32
60 60 2660,92 5242,64 7903,56 -711,64 12434,56 -1126,75
90 90 2771,20 4275,12 7046,33 -1705,23 9616,22 -1472,25
120 120 -1822,93 2344,01 521,09 4976,96 7842,06 454,77
150 150 -1099,00 -594,25 -1693,26 5101,68 2814,17 776,79
180 180 2771,20 -1472,25 1298,95 4275,12 4101,82 -1705,23
210 210 2026,90 347,64 2374,54 7764,64 10486,82 -2261,45
240 240 -2206,34 753,21 -1453,13 5242,64 4542,73 -157,97
270 270 -3410,46 -1472,25 -4882,72 4275,12 -2079,85 1385,60
300 300 -673,08 -1470,14 -2143,22 2344,01 -1269,35 6326,95
330 330 -1423,28 1330,46 -92,82 -594,25 643,38 4710,15
360 360 -3410,46 1385,60 -2024,86 -1472,25 -2111,51 4275,12
390 390 9953,92 -911,46 9042,45 347,64 8478,63 2451,14
420 420 10203,35 -549,50 9653,85 753,21 9857,56 -570,68
450 450 8550,25 1385,60 9935,85 -1472,25 9849,19 -1705,23
480 480 15529,28 1013,45 16542,7 -1470,14 16086,03 -443,67
510 510 10485,28 -1103,17 9382,11 1330,46 9609,40 -735,22
540 540 8550,25 -1705,23 6845,01 1385,60 6525,39 -1472,25
570 570 4688,03 -336,54 4351,49 -911,46 3103,48 5768,27
600 600 -1188,50 -711,64 -1900,14 -549,50 -3161,29 6590,11
630 630 -2944,51 -1705,23 -4649,74 1385,60 -4969,37 4275,12
660 660 695,28 4976,96 5672,24 1013,45 11662,65 526,23
690 690 1506,43 5101,68 6608,11 -1103,17 10606,61 -17,01
720 720 -2944,51 4275,12 1330,61 -1705,23 3900,51 1385,60

Таблица 2.4. Таблица набегающих моментов на коренные шейки (Н)

α Т1,5 Т2,6 Т1,5+Т2,6 Т3,7

Т1,5+Т2,6+

+Т3,7

Т4,8

Т1,5+Т2,6+

+Т3,7+Т4,8

0 -2944,51 8550,25 5605,74 -3410,46 2195,27 2771,20 4966,48
30 -2940,28 15529,28 12589,00 -673,08 11915,92 1812,64 13728,56
60 2660,92 10485,28 13146,20 -1423,28 11722,92 -2253,49 9469,42
90 2771,20 8550,25 11321,45 -3410,46 7910,99 -2944,51 4966,48
120 -1822,93 4688,03 2865,10 9953,92 12819,01 909,54 13728,56
150 -1099,00 -1188,50 -2287,51 10203,35 7915,84 1553,58 9469,42
180 2771,20 -2944,51 -173,30 8550,25 8376,94 -3410,46 4966,48
210 2026,90 695,28 2722,18 15529,28 18251,46 -4522,90 13728,56
240 -2206,34 1506,43 -699,91 10485,28 9785,37 -315,95 9469,42
270 -3410,46 -2944,51 -6354,97 8550,25 2195,28 2771,20 4966,48
300 -673,08 -2940,28 -3613,36 4688,03 1074,67 12653,89 13728,56
330 -1423,28 2660,92 1237,63 -1188,50 49,13 9420,29 9469,42
360 -3410,46 2771,20 -639,26 -2944,51 -3583,77 8550,25 4966,48
390 9953,92 -1822,93 8130,99 695,28 8826,27 4902,29 13728,56
420 10203,35 -1099,00 9104,35 1506,43 10610,78 -1141,35 9469,42
450 8550,25 2771,20 11321,45 -2944,51 8376,94 -3410,46 4966,48
480 15529,28 2026,90 17556,18 -2940,28 14615,89 -887,34 13728,56
510 10485,28 -2206,34 8278,94 2660,92 10939,86 -1470,43 9469,42
540 8550,25 -3410,46 5139,78 2771,20 7910,99 -2944,51 4966,48
570 4688,03 -673,08 4014,95 -1822,93 2192,02 11536,53 13728,56
600 -1188,50 -1423,28 -2611,79 -1099,00 -3710,79 13180,21 9469,42
630 -2944,51 -3410,46 -6354,97 2771,20 -3583,77 8550,25 4966,48
660 695,28 9953,92 10649,20 2026,90 12676,09 1052,46 13728,56
690 1506,43 10203,35 11709,78 -2206,34 9503,44 -34,01 9469,42
720 -2944,51 8550,25 5605,74 -3410,46 2195,28 2771,20 4966,48

3. Расчет деталей двигателя на прочность


3.1 Расчет поршня


Поршень работает в тяжелых условиях, так как подвергается воздействию как механических нагрузок от давления газов и сил инерции, так и термических из-за необходимости отвода теплоты от нагретой газами головки в охлаждающую среду. Кроме того, направляющая часть работает на износ при высоких температурах. Основные требования к материалу поршня:

хорошая теплопроводность;

малые значения коэффициента линейного расширения;

высокая механическая прочность и жаростойкость;

малый удельный вес.

Для уменьшения износа юбка поршня имеет бочкообразный профиль по образующей и овальный профиль в поперечном сечении. Днище поршня имеет выемку, а в бобышках сделаны отверстия для прохода масла к поршневому пальцу. Материал поршня – алюминиевый сплав.

Исходные данные:


Рис.3.1. Расчетная схема поршня


Напряжения, возникающие по контору заделки


,


где t – радиальный зазор маслосъемного кольца (t = 3,225 мм);

∆t – радиальный зазор компрессионного кольца (∆t = 0,8 мм).


Напряжения в центре днища



Рассчитаем сечение Х-Х

Напряжения сжатия



Напряжение разрыва в сечении Х-Х



Напряжения в верхней кольцевой перемычке.

а) среза



б) изгиба



в) суммарное



Удельное давление на стенку цилиндра



3.2 Расчет поршневого пальца на прочность


Во время работы двигателя поршневой палец подвергается воздействию переменных нагрузок, приводящих к возникновению напряжений изгиба, сдвига, смятия и овализации.Поршневой палец - стальной, трубчатого сечения. Для повышения износостойкости его наружную поверхность цементируют и закаливают.

Материал пальца – Ст15Х ГОСТ 4543-71

Исходные данные:

Наружный диаметр пальца dn=27мм

Внутренний диаметр пальца dв=18мм

Длина пальца lп=70мм

Длина втулки шатуна l ш=34мм

Расстояние между торцами бобышек b=36мм

Расчетная сила, действующая на поршневой палец:

- газовая:



-инерционная:


Рис.3.2. Расчетная схема поршневого пальца а- распределение нагрузки, б- эпюры напряжений


-расчетная:



где k=0,83 – коэффициент, учитывающий массу поршневого пальца



Удельное давление пальца на втулку поршневой головки шатуна



Удельное давление пальца на бобышки


Напряжение изгиба в среднем сечении пальца



Касательные напряжения среза в сечениях между бобышками и головкой шатуна.



Наибольшее увеличение горизонтального диаметра пальца при овализации



Напряжение овализации на внешней поверхности кольца в горизонтальной плоскости (т.1 j=0°)



В вертикальной плоскости (т.3, j=9°)



Напряжение овализации на внутренней поверхности кольца в

горизонтальной плоскости (т.2, j=°)



В вертикальной плоскости (т.4, j=9°)



Наибольшие напряжения овализации возникают на внешней поверхности пальца в вертикальной плоскости. Они не должны превышать 300-350 МПа.

Условие выполняется.


3.3 Расчет шатуна на прочность


Шатун подвергается воздействию знакопеременных газовых инерционных сил. Помимо напряжения сжатия в стержне шатуна возникают напряжения изгиба и растяжения.

Для изготовления шатуна должны быть выбраны высококачественные материалы, обладающие высокой прочностью, относительным удлинением, сопротивлением удару, пределом усталости.

Необходимо также учитывать одно из основных требований к конструкции шатуна – получение минимальной массы при необходимой прочности и надежности.

Шатун стальной, кованный, двутаврового сечения. В нижней головке шатуна выполнено отверстие, через которое масло разбрызгивается на поверхность цилиндра.

Материал шатуна: Ст 45Г2 ГОСТ 4543-71


3.3.1 Расчет поршневой головки шатуна

Исходные данные:

Масса поршневой группы mп=0,99337кг

Масса шатунной группы mш=1,245кг

Частота вращения n=4000 об/мин

Ход поршня S=0,089м

Площадь поршня Fп=0,0083м2

Диаметр верхней головки шатуна:

Наружный dг=35

Внутренний d=26мм

Радиальная толщина стенки головки

Для стали 45Г2 имеем:

Предел прочности

Предел усталости при изгибе

Предел текучести

Расширение-сжатие

Коэффициент приведения цикла при изгибе aσ=0,17

Коэффициент приведения цикла при растяжении-сжатии aσ=0,12

При изгибе:



При растяжении-сжатии:



Рис.3.3. Расчетная схема шатунной группы Расчет сечения I-I


Максимальное напряжение пульсирующего цикла



Среднее напряжение и амплитуда напряжения.


eм=0,86


– масштабный коэффициент


en=0,9


-коэффициент поверхностной чувствительности (чистое обтачивание внутренней поверхности головки)


то запас прочности в сечении I-I определяем по пределу усталости



Напряжения от запрессованной втулки:

удельное давление на поверхности соприкосновения втулки с головкой



где - коэффициент Пуассона; - суммарный натяг.

Напряжения от суммарного натяга на внешней поверхности головки



напряжения от суммарного натяга на внутренней поверхности головки



Рис.3.4. Расчетная схема головки шатуна а- при растяжении; б- при сжатии


Расчет на усталостную прочность сечения перехода головки шатуна в стержень.

-Максимальная сила, растягивающая головку



-Нормальная сила и изгибающий момент в верхней части шатуна

wшз=105°- угол заделки головки


-Нормальная сила и изгибающий момент в расчетном сечении от растягивающей силы



-Напряжения на внешнем волокне от растягивающей силы



Суммарная сила, сжимающая головку:


Нормальная сила и изгибающий момент в расчетном сечении от сжимающей силы.



-Напряжение на внешнем волокне от сжимающей силы



-Максимальное и минимальное напряжение а симметричного цикла



-Среднее напряжение и амплитуда напряжений



то запас прочности в сечении перехода головки шатуна в стержень определяем по пределу текучести



3.3.2 Расчет кривошипной головки шатуна

Исходные данные

Масса шатунной группы: mш = 1,245 кг

Масса шатуна, сосредоточенная на оси поршневого пальца mшп = 0,342 кг

Масса шатуна, сосредоточенная на оси кривошипа mшк = 0,903 кг

Масса крышки кривошипной головки mкр = 0,25 mш=0,311 кг

Диаметр шатунной шейки dшш = 60мм

Толщина стенки вкладыша tb = 3,14 мм

Расстояние между шатунными болтами сб = 77 мм

Длина кривошипной головки lk = 27 мм

Максимальная сила инерции


Момент сопротивления расчетного сечения:



Момент инерции вкладыша и крышки



Напряжения изгиба крышки и вкладыша.


;


3.3.3 Расчет стержня шатуна

Длина шатуна: lш = 166 мм

Размеры сечения шатуна: bш=15,75 мм, aш=7,5 мм, tш=4мм, hш=30 мм

Внутренний диаметр головки d1 =67мм

Из динамического расчета имеем:


Площадь и момент инерции расчетного сечения В – В



Максимальное напряжение от сжимающей силы в плоскости качания шатуна



В плоскости перпендикулярной плоскости качания шатуна


L1 – длина стержня шатуна между расточками верхней и нижней головок шатуна.

L0– расстояние между осями головок шатуна.

Минимальное напряжение осей растягивающей силы



Средние напряжения и амплитуды цикла:


Где



- эффективный коэффициент концентрации напряжений;


т.к.

и


запас прочности в сечении определяется по пределу усталости



3.3.4 Расчет шатунных болтов

Из расчета кривошипной головки шатуна имеем: максимальная сила инерции, растягивающая кривошипную головку и шатунный болт Pjp=0,0122МH

Принимаем:

номинальный диаметр болта d=11 мм

шаг резьбы t=1 мм

количество болтов iб=2

материал болта Сталь 40Х ГОСТ4543 – 71

Для указанной стали имеем:


σв = 800 МПа

σт = 700 МПа

σ-1р = 260 МПа

ασ = 0,12

;

;


Сила предварительной затяжки


;


Суммарная сила, растягивающая болт


, Н;


где х = 0,2 – коэффициент основной нагрузки резьбового соединения


;


Максимальное и минимальное напряжение, возникающее в болтах:


Среднее напряжение и амплитуда цикла


;

;

т.к. ,


то запас прочности определяется по пределу текучести



3.4 Расчет коленчатого вала на прочность


Коленчатый вал – наиболее сложная в конструктивном отношении и наиболее напряженная деталь двигателя, воспринимающая периодические нагрузки от сил давления газов, сил инерции и их моментов.

Исходные данные:

Радиус кривошипа R=44,7мм

Наружный диаметр коренной шейки

Длина коренной шейки

Наружный диаметр шатунной шейки

Длина шатунной шейки

Для стали 50Г имеем:

Предел прочности

Предел усталости при изгибе

Предел текучести ,

Расширение-сжатие

Предел усталости при кручении

Коэффициент приведения цикла при изгибе aσ=0,18

Коэффициент приведения цикла при растяжении-сжатии aσ=0,14

Коэффициент приведения цикла при кручении

При изгибе:



При растяжении-сжатии:



При кручении:



3.4.1 Расчет коренной шейки

Момент сопротивления коренной шейки кручению


Максимальное и минимальное касательное напряжения знакопеременного цикла для наиболее нагруженной 3-й коренной шейки (см. табл. 2.4)



Среднее напряжение и амплитуда напряжений:


-


коэффициент концентрации напряжений


-коэффициент поверхностной чувствительности

– масштабный коэффициент

q=0.71- коэффициент чувствительности материала к концентрации напряжений


то запас прочности коренной шейки определяют по пределу усталости:



3.4.2 Расчет шатунной шейки

Момент сопротивления кручению шатунной шейки



Максимальное и минимальное касательное напряжения знакопеременного цикла для наиболее нагруженной 3-й шатунной шейки (см. табл. 2.3)



Среднее напряжение и амплитуда напряжений:


-

коэффициент концентрации напряжений


-коэффициент поверхностной чувствительности

– масштабный коэффициент

q=0.71- коэффициент чувствительности материала к концентрации напряжений


то запас прочности коренной шейки определяют по пределу усталости:



Моменты, изгибающие шатунную шейку однопролётного коленчатого вала в плоскости, перпендикулярной плоскости кривошипа:


где


Масляное отверстие на шатунной шейке целесообразно сделать в горизонтальной плоскости (φм=45˚)



расчет моментов приведен в табл.3.1.

Максимальные и минимальные нормальные напряжения ассиметричного цикла в шатунной шейке:


где


Таблица 3.1.

φ МТ Мz Мφм
0 330,29 -628,77 -211,33
30 941,63 -397,87 384,12
60 840,91 -51,86 557,69
90 603,44 -38,34 399,40
120 588,32 -220,89 259,59
150 270,26 -328,38 -41,27
180 268,22 -347,61 -56,31
210 682,74 -328,38 250,28
240 351,12 -228,25 86,72
270 -33,05 -49,52 -58,39
300 -46,51 -22,70 -48,94
330 2,44 -162,15 -112,98
360 -109,17 -37,41 -103,63
390 688,86 864,01 1098,10
420 672,44 160,21 588,63
450 617,49 -162,42 321,57
480 1134,37 -417,83 506,23
510 729,89 -525,43 144,22
540 452,81 -439,70 9,02
570 199,00 -344,15 -102,79
600 -157,90 -228,21 -273,04
630 -245,75 -41,32 -202,93
660 836,05 -48,97 556,30
690 703,98 -389,74 221,89
720 330,29 -628,77 -211,33
min

-273,04
max

1098,10

Среднее напряжение и амплитуда напряжений:



- коэффициент концентрации напряжений


-коэффициент поверхностной чувствительности

– масштабный коэффициент

q=0,71- коэффициент чувствительности материала к концентрации напряжений


Запас прочности шатунной шейки от нормальных напряжений определяется по пределу усталости:



Общий запас прочности шатунной шейки:



3.4.3 Расчет щеки.

Проверка необходимости расчета щеки. Если выполняется условие:

,


то проводить проверочный расчет щеки нет необходимости:


,


55,5 мм > 41,05 мм


→ значит проверять щеки на прочность нет необходимости.


Список использованной литературы


Воробьев В.И. Автомобильные двигатели. Расчет и конструирование автомобильного двигателя. Методические указания к выполнению курсового проекта для студентов дневной формы обучения специальности 1505 "Автомобили и автомобильное хозяйство"- Брянск БИТМ – 1990 –