Проект проведения подземной горной выработки
выработки" width="361" height="64" align="BOTTOM" border="0" /> принимаем 46 шпуров.В связи с большой шириной выработки (двухпутка) один ряд клинового вруба увеличит выход негабаритов, а при увеличении массы зарядов во врубах про-изойдет большой разлет породы. В связи с тем, что бурение шпуров осуществ-ляется в крепких породах и согласно рекомендациям, эффективнее всего применить двойной клиновой вруб который состоит из 10 шпуров [4. стр292]. При этом длина первого ряда врубовых шпуров короче второго ряда на 1м. Итак, первый ряд врубов состоит из 4-х шпуров длиной по 2,0м, второй – из 6 шпуров по 3,0м. Принимаем следующее число шпуров в комплекте: врубовых – 10; отбойных – 8; оконтуривающих – 28. У почвы выработки расстояние между шпурами несколько уменьшаем. Один оконтуривающий шпур пробуривается под углом 700 для проходки канавы.
Расход ВВ Nobelit 216 Z на один цикл:
Средняя масса одного шпурового заряда будет равна:
Расчётная масса заряда врубового шпура должна быть не менее:
Масса зарядов всех врубовых шпуров:
Общая масса зарядов отбойных и оконтуривающих шпуров:
Средняя масса отбойного и оконтуривающего шпуров:
Из условия размещения в шпуре целого числа патронов, количество патронов в каждом шпуре принимаем:
Во врубовом шпуре: длиной 3м
Во врубовом шпуре: длиной 2,0м принимаем 3патрона
В отбойном шпуре:
В оконтуривающем:
Фактическая масса заряда каждого шпура будет равна:
Длина шпурового заряда:
врубовых lз.вр = к*lп = 4*0,5 = 2,0м; lз.вр = к*lп = 3*0,5 = 1,5м
отбойных и оконтур. lз.от =lз.ок = к*lп = 3*0,5 = 1,5м
Найдём фактический коэффициент заполнения шпуров взрывчатым веществом:
Для врубовых шпуров: ;
Для отбойных шпуров:
Для оконтуривающих:
Длина забойки в каждом шпуре составит:
;
Фактический расход ВВ на цикл составит:
Объём отбиваемой породы за взрыв составит:
Фактический удельный расход ВВ будет равен:
Расход ВВ на 1 п.м. выработки:
Объём бурения в цикле составит:
При выборе схемы расположения шпуров необходимо придерживаться следующих основных положений. В забоях с одной плоскостью обнажения должны предусматриваться врубовые, отбойные и оконтуривающие шпуры.
Врубовые шпуры располагаются под углом 800-850 к плоскости забоя, отбойные под углом 900 и оконтуривающие – под углом 800-870 с наклоном в сторону проектного контура поперечного сечения выработки.
Чем крепче порода, тем ближе друг к другу должны быть расположены врубовые шпуры и тем меньше относительный объём врубовой полости. Расстояние между парами врубовых шпуров при диаметре патрона 36мм и работоспособности 360 см3 40ч45 см.
Расстояние между отбойными шпурами, оконтуривающими и врубовыми, должны быть, не более, преодолеваемой взрывом ЛНС (линии наименьшего сопротивления W – кратчайшего расстояния от заряда до свободной поверхности, образованной взрывом предыдущих зарядов) 0,5м.
У почвы выработки расстояние между шпурами может быть несколько уменьшено, а у кровли, соответственно, несколько увеличено.
Расстояние от контура выработки до устьев оконтуривающих шпуров принимается равным 15ч20 см.
Расчёт взрывной сети
Для производства взрывных работ принимаем электрический способ взрывания с последовательным соединением электродетонаторов с семью степенями замедления. Принятый способ взрывания максимально безопасен для взрывного персонала, а принятая схема взрывания не только проста, но и надёжна т.к. легко позволяет проверить правильность коммутации взрывной сети. В качестве средств взрывания будем применять электродетонаторы марки ЭД-8-Э с жёстким креплением мостика, нормальной мощности, предназначенные для мгновенного взрывания и электродетонаторы короткозамедленного действия марки ЭДКЗ
Шпуры в комплекте взрываются в определённой последовательности: первый ряд врубов; второй ряд врубов; отбойные; оконтуривающие справа; оконтуривающие слева; оконтуривающие по кровле выработки и нижние оконтуривающие.
Число ступеней замедления оптимальное – 7.
Техническая характеристика электродетонаторов
Марка ЭД |
ЭД-8-Э |
ЭДКЗ |
Безопасный ток, А |
0,18 | 0,18 |
Сопротивление, Ом. |
3,5 | 3,5 |
Наружный диаметр, мм |
7,2 | 7,7 |
Длина, мм |
60 | 72 |
Длина провода ЭД, м |
2,0 | 2,0 |
Число серий |
- | 6 |
Интервал, мс. |
0 | 25;50;75;100;150;250. |
В качестве источника тока для инициирования электродетонатора применяем конденсаторный взрывной прибор ПИВ-100м, который предназначен для инициирования до 100 последовательно соединённых и одиночных электродетонаторов с нихромовым мостиком накаливания нормальной чувствительности при внешнем сопротивлении взрывной сети до 320 Ом. ПИВ-100м имеет омметр и пакетный переключатель
Техническая характеристика ПИВ-100м [4]
Показатель |
Ед изм |
Значение |
Исполнение | РВ | |
Источник питания | сухие элементы | |
Напряжение на конденсаторе | В | 600 |
Максимальное сопротивление взрывной сети | Ом | 320 |
Емкость конденсатора-накопителя | мкФ | 9 |
Время заряжения конденсатора | мс | не более 8 |
Размеры | мм | 195х126х95 |
Масса | кг | 2,7 |
Расчет электровзрывной сети
Независимо от способа соединения электродетонаторов в цепь (последовательное, параллельное и параллельно-последовательное) для безотказного взрывания необходимо, чтобы в каждый из них поступал ток величиной не менее гарантийного, значение которого приводятся в характеристике электродетонатора. Сечение жилы магистральных проводов должно быть не менее 0,75мм2, а участковых и соединительных проводов–0,5мм2.
В качестве соединительных проводов применяем провод ВМП. В качестве магистральных проводов применяем провод марки ВМВЖ:
Параметр |
ВМП |
ВМВЖ |
Диаметр жил | 0,8 | 1,2 |
Площадь поперечного сечения, мм2 | 0,5 | 1,13 |
Число проволочек: - медных, стальных | 1 | 1 |
Сопротивление, Ом/м | 0,04 | 0,14 |
Материал изоляции жилы | полиэтилен | полиэтилен |
Наружный диаметр провода, мм | 2,3 | 2,7 |
Длину магистрального провода (с учётом запаса на катушке) принимаем равной 0,15км. Сопротивление магистрального провода мы можем найти по следующей формуле:
Длину соединительных проводов принимаем равной 20метров. Сопротивление соединительного провода мы можем найти по следующей формуле:
Принимая последовательное соединение 46 электродетонаторов, определим ток, проходящий через каждый электродетонатор:
, где
- число электродетонаторов;
- сопротивление одного электродетонатора;
- напряжение источника тока.
По правилам безопасности, при последовательном соединении до 300 электродетонаторов, гарантийный ток должен быть не менее 1,3 А.
Условие безотказности взрыва: , где
- сопротивление последовательно соединённой взрывной сети, Ом;
- сопротивление взрывного прибора.
, где
- число электродетонаторов;
- сопротивление одного электродетонатора;
- длина соединительных проводов;
- длина магистральных проводов;
, - сопротивление проводов соединительных
и магистральных соответственно.
следовательно, условие безотказности взрыва соблюдено.
Из расчёта видно, что принятая схема электровзрывания удовлетворяет всем требованиям безотказности взрывания.
Основные показатели буровзрывных работ
Подвигание забоя за цикл: Lух = 2,1 м
Выход породы за цикл: V = LухSвч V = 2,1*8,5 = 17,85 м3.
Наименование ВВ– Nobelit 216Z; наименование СВ – ЭД-8Э, ЭДКЗ
Способ инициирования – прямой
Способ взрывания – электрический
Способ заряжания – ручной
Наименование вруба – вертикальный двойной клиновой
Материал забойки – глина
Радиус опасной зоны – 150м
Диаметр шпуров – 40 мм
Глубина шпуров: врубовых 2,0м; 3,0м;
отбойных 2,45 м; оконтуривающих 2,45м.
КИШ – 0,85
Количество шпурометров на цикл 114,2пм
Количество шпурометров на 1п.м. – 54,4м/м.
Количество шпурометров на 1м3 – 6,4м/м3.
Число шпуров на цикл – 46 шт.
Расход ВВ на цикл: QВВ = 86,4кг.
Расход ВВ на 1м3 – 4,84кг/м3.
Расход ЭД на цикл – 46шт
Расход соединительных проводов на цикл – 20м
Время проветривания – 0,5ч
Параметры БВР
Номер шпуров | Наименование шпуров | Угол наклона, град | Глубина шпура, м | Масса шпурового заряда, кг | Длина заряда, м | Очередность взрывания | Тип ЭД, интервал замедления, мс |
1-4 | Врубовые | 80 | 2,0 | 1,8 | 1,5 | 1 | ЭД-8-Э |
5-10 | Врубовые | 80 | 3,0 | 2,4 | 2,0 | 2 | ЭДКЗ-25 |
11-18 | Отбойные | 90 | 2,45 | 1,8 | 1,5 | 3 | ЭДКЗ-50 |
19-24 | Оконтур | 85 | 2,45 | 1,8 | 1,5 | 4 | ЭДКЗ-75 |
33-38 | Оконтур | 85 | 2,45 | 1,8 | 1,5 | 5 | ЭДКЗ-100 |
25-32 | Оконтур | 85 | 2,45 | 1,8 | 1,5 | 6 | ЭДКЗ-125 |
39-46 | Оконтур | 85 | 2,45 | 1,8 | 1,5 | 7 | ЭДКЗ-150 |
Разработка паспорта проветривания
Выбор схемы проветривания:
Основной задачей проветривания тупиковых выработок является поддерживание установленных Правилами безопасности параметров рудничной атмосферы. Исходя из горнотехнических и горно-геологических условий данной выработки, наиболее приемлемым будет является комбинированный способ проветривания (выработка не опасна по газу и пыли). Комбинированный способ проветривания рекомендуется Правилами безопасности как основной. Его используют в выработках протяжённостью более 300м. Комбинированный способ проветривания тупиковых выработок представляет собой сочетание нагнетательного и всасывающего способов. Он позволяет до максимума сократить время удаления газов и особенно целесообразен для проветривания протяжённых выработок большой площадью сечения, а также при скоростных проходках.
Основным недостатком этого способа в обычных условиях является наличие двух вентиляторных установок. Необходимость регулирования режимов их работы и увеличение эксплуатационных затрат.
Учитывая то, что данная горная выработка имеет большую протяжённость 380м, площадь поперечного сечения – 8,5м2, и неопасна по газу и пыли, принимаем комбинированный способ проветривания. При его использовании по всей длине трубопровода прокладывается только всасывающий трубопровод, а в призабойной части выработки – трубопровод, по которому в рабочую зону подается воздух из незагрязненной части выработки.
Нагнетательный вентилятор устанавливаемый в выработке должен располагаться от забоя на расстоянии не менее длины зоны отброса газов Lз.о..
Найдём длину зоны отброса газов по формуле:
, Принимаем Lз.о. = 110м
Где - количество одновременно взрываемого ВВ, кг (86,4кг);
- площадь поперечного сечения выработки в свету, м2 (8,3м2);
- подвигание забоя за один цикл, м (2,1м);
- плотность горной породы, кг/м3 (2650 кг/м3).
По Правилам безопасности отставание трубопровода от забоя допускается в горизонтальной выработке не более чем на 10м. Исходя из этого, длина нагнетательного трубопровода будет равна. LТ = 110 – 10 = 100м
Принимаем длину всасывающего трубопровода 380м, так как всасывающий трубопровод устанавливается на расстоянии не менее 18ч20 м от забоя, а всасывающий вентилятор должен располагаться не ближе чем в 20м от устья штрека во избежание подсасывания загрязнённого воздуха.
Расчёт подачи свежего воздуха для разжижения вредных газов от взрывных работ при комбинированном способе проветривания:
Количество воздуха необходимого для проветривания (подаваемое в забой), исходя из разбавления газов после взрывных работ по обводненным породам, по формуле В.И. Воронина для нагнетательного вентилятора:
м3/мин
- длина проветриваемой выработки;
- фактическая величина газовости ВВ, т.е. объём условной окиси углерода, выделяемой при взрыве 1кг ВВ, л/кг (40 л/кг);
- продолжительность проветривания, мин
А - масса ВВ, взрываемого в одном цикле проходки;
- площадь поперечного сечения выработки в свету.
Количество воздуха, удаляемого из забоя всасывающим вентилятором при отсутствие перемычки на границе зоны отброса газов:
QЗ.ВС = 1,3* QЗ = 1,3*220,6 = 286,8 м3/мин = 4,78м3/сек
Проверяем полученное значение на допустимую скорость движения воздушной струи по выработке: Vd = QЗ.ВС/S = 4,78/8,3 = 0,5м/сек
Для эффективного выноса пыли из проектируемой выработки, скорость движения воздушной струи по штреку лежит в допустимых пределах
Определим количество воздуха исходя из минимальной скорости движения воздуха.
Количество воздуха по числу людей одновременно работающих в забое.
Если в выработке не ведутся работы, связанные с пылеобразованием и отсутствуют другие вредные вещества, подача воздуха должна составлять не менее 6 м3/мин на каждого человека, считая по наибольшему числу людей в выработке:
,
- количество людей в забое.
Таким образом, для дальнейших расчётов принимаем количество воздуха на забой, исходя из разбавления газов после взрывных работ
Количество воздуха, удаляемого из забоя всасывающим вентилятором:
Выбор типа и диаметра вентиляционного трубопровода.
Тип вентиляционных труб должен соответствовать площади поперечного сечения и длине выработки. Диаметр вентиляционных труб выбирается из расчёта, чтобы скорость движения воздушной струи по трубопроводу не превышала 20м/с. Для нагнетательного вентилятора принимаем текстовинитовые гибкие вентиляционные трубы. Их главное достоинство – небольшая масса и невысокое аэродинамическое сопротивление.
Принимаем для нагнетательного вентилятора трубы из прорезиненной ткани (тип МУ) диаметром 500мм. У гибкого трубопровода в один из швов вмонтированы специальные крючки, с помощью которых он подвешивается к анкерной крепи
Скорость движения воздуха по трубопроводам удовлетворяет требованиям безопасности
Техническая характеристика гибких труб
Диаметр, м |
0,5 |
Тип |
МУ |
Тканевая основа |
Чефер |
Покрытие двустороннее |
негорючей резиной |
Масса 1 м, кг |
1,6 |
Длина, м |
20 |
Коэффициент аэродинамического сопротивления, Нс2/м4 |
0,0030 |
Для стыковки гибких труб друг с другом в их концы вмонтированы стальные разрезные пружинящие кольца. Для соединения соседних звеньев пружинное кольцо одного звена сжимают и вводят внутрь другого. При включении вентилятора стык самоуплотняется.
Для всасывающего вентилятора принимаем металлические вентиляционные трубы. Учитывая длину всасывающего трубопровода, для приведения аэродинамического сопротивления в оптимальный предел значений принимаем диаметр всасывающего трубопровода равным 0,6м.
Скорость движения воздуха по трубопроводам удовлетворяет требованиям безопасности
Расстояние от конца всасывающего трубопровода принимаем:
Техническая характеристика металлических труб
Диаметр, м |
0,6 |
Материал |
металл |
Длина звена, м |
4 |
Масса 1 м трубы, кг |
35,7 |
Коэффициент аэродинамического сопротивления, Н*с2/м4 |
0,0030 |
Расчёт аэродинамических параметров трубопроводов
Проветривание проектируемой горной выработки при её проведении осуществляется с помощью вентиляторов местного проветривания.
Аэродинамическими параметрами трубопровода являются аэродинамическое сопротивление, воздухопроницаемость и депрессия. По трубам воздух движется за счет разности давлений у их концов, которая затрачивается на преодоление сопротивлений, оказываемых ими. Аэродинамическое сопротивление трубопровода при любой форме его сечения определяется по формуле:
где
- коэффициент аэродинамического сопротивления,;
- длина трубопровода, м; - диаметр трубопровода, м.
Найдём аэродинамическое сопротивление трубопровода:
- для всасывающего вентилятора:
H*c2/м2
где - коэффициент аэродинамического сопротивления;
- диаметр вентиляционной трубы для всасывающего вентилятора.
- для нагнетательного вентилятора:
H*c2/м2
- коэффициент аэродинамического сопротивления;
- диаметр вентиляционной трубы для нагнетательного вентилятора.
Найдём воздухопроницаемость трубопроводов:
- коэффициент подсосов для всасывающего трубопровода:
- коэффициент, характеризующий плотность соединения звеньев трубопровода (при хорошем качестве сборки).
- длина одной трубы, м;
LТ=380м- длина всасывающего трубопровода, м;
- диаметр труб, м;
R1=95 - аэродинамическое сопротивление всасывающего трубопровода;
- коэффициент утечек для нагнетательного трубопровода 1,08
Депрессия вентиляционных трубопроводов:
Общая депрессия, которую должен преодолеть вентилятор:
где
- статическая депрессия, Па;
- депрессия за счёт местных сопротивлений (уменьшение диаметра, повороты трубопровода), Па;
- динамическая депрессия, Па.
Под депрессией вентиляционного трубопровода понимаются потери напора.
Статическая депрессия трубопровода (статистический напор вентиляторов):
, где
- коэффициент воздухопроницаемости трубопровода;
- необходимая подача свежего воздуха, м3/с.
- аэродинамическое сопротивление трубопровода.
Депрессия вентилятора, необходимая для преодоления сопротивления трубопровода определяется по формуле:
- для всасывающего трубопровода
hвс ст = 1,25*4,782 *95 = 2713 Па
- для нагнетательного трубопровода
hН ст = 1,07*3,72 *62 = 908 Па
В действительности, в трубопроводе из-за утечек расход воздуха по длине трубопровода непостоянен, поэтому при расчёте мы пользовались среднегеометрическим значением.
Депрессия на преодоление местных сопротивлений в гибком трубопроводе – зависит от степени турбулентности воздушного потока и количества стыков между отдельными звеньями:
где
- число стыков по всей длине трубопровода;
- коэффициент местного сопротивления одного стыка;
- скорость движения воздуха в трубопроводе, м/с;
- плотность воздуха, кг/м3.
Приближённо депрессия на преодоление местных сопротивлений в гибком трубопроводе может приниматься равной 20% от статической депрессии:
hМ = 0,2* hН ст = 0,2*908