Проектирование техологии бурения наклонно-направленной скважины глубиной 1773 м

0,18 = 0,051 мкм2, (24)

кв = к · кв/ = 0,285 · 0,02 = 0,006 мкм2, (25)


– основная пачка


кн = к · кн/ = 0,484 · 0,01 = 0,005 мкм2, (26)

кв = к · кв/ = 0,484 · 0,29 = 0,140 мкм2, (27)


где к – среднее значение проницаемости по продуктивным пачкам, мкм2

Кривые относительных проницаемостей получены экспериментальным путем для девонских песчаников пласта DI Туймазинского месторождения.


Рисунок 14 – Экспериментальные кривые относительных фазовых проницаемостей девонских песчаников для нефти и воды пласта DI Туймазинского месторождения


Среднее пластовое давление по участку


МПа, (28)


где Рi – пластовые давления, измеренные в окружающих скважинах, МПа

Радиус контура питания скважины


м, (29)


Проектный дебит скважины

– верхняя пачка

по воде:


, (30)


по нефти:


, (32)


– основная пачка

по воде


, (34)

по нефти


, (36)


где 86400 – пересчетный коэффициент, с;

h – толщина соответствующих продуктивных пачек, м;

Рз – забойное давление проектной скважины

µв – вязкость воды в пластовых условиях, Па·с;

µн – вязкость нефти в пластовых условиях, Па·с;

rс – радиус скважины, м

Суммарный дебит жидкости скважины по всем продуктивным пачкам составит 58,3 м3/сут, по нефти – 7,25 м3/сут (6,14 т/сут), по воде – 51,05 м3/сут, обводненность продукции – 87,6%.


3.5.3 Прогнозирование показателей работы боковых стволов

Для прогноза показателей эксплуатации боковых стволов применяются статистические методы и математические модели.

При использовании в процессе проектирования математической модели прогноз добычи нефти из проектного бокового ствола состоит из двух этапов.

1 Идентификация параметров модели по данным эксплуатации на участке добывающих и нагнетательных скважин.

2 Прогноз добычи нефти.

Выбор местоположения БС и оценку технологической эффективности с применением математических моделей осуществляет БашНИПИнефти.

Применяемый в настоящее время в БашНИПИнефти комплекс программ для создания трехмерных двухфазных математических моделей разработки позволяет рассчитывать технологические показатели эксплуатации скважин с пространственным профилем ствола. При этом достоверность результатов прогноза тем выше, чем детальнее геологическая модель и чем точнее она настроена по истории разработки объекта.

Для правильного определения дебита жидкости бокового ствола с помощью модели (в случае расчетов по заданному забойному давлению) необходимо знать величину скин-фактора пласта (пропластка), на который бурится боковой ствол.

Исходная информация для математического моделирования – номера скважин, из которых предполагается забуривание бокового ствола, конструкция БС (отход от ствола основной скважины, способ вскрытия пласта, т.е. интервалы перфорации, протяженность открытого ствола, диаметр ствола). Особое внимание уделяется обоснованию выбора конструкции интервала продуктивного пласта, освоение и эксплуатация скважин.

Выходная информация – динамика показателей работы БС (расчетный дебит жидкости, обводненность во времени, извлекаемые запасы).

Прогнозирование показателей работы боковых стволов во времени с помощью моделей является необходимым условием обоснования бурения БС, определения его технологической и экономической эффективности.

Точность прогнозных значений работы БС зависит от степени изученности рассматриваемого участка и достоверности геолого-промысловой информации.

Динамику изменения дебита нефти проектной скважины по годам определим по интенсивности падения дебитов нефти окружающих скважин при достижении значений обводненности 87% выше (таблица 22).

На рисунке 15 представлена кривая падения дебитов окружающих скважин после достижения обводненности продукции 87% и линия возможной добычи нефти на момент достижения обводненности 87% при условии сохранения достигнутого уровня годовой добычи нефти.


Таблица 22. Показатели работы скважин участка во времени

Год Годовая добыча, т Текущая обводненность, % Накопленная добыча, т Среднегодовой дебит, т/сут

нефти жидкости
нефти жидкости нефти жидкости
1986 5432 47928 87 125068 796004 3,7 60,3
1987 3768 42664 88 128836 838668 2,6 37,5
1988 3612 36660 90 132448 875328 2,5 25,0
1989 1984 22308 91 134432 897636 1,6 17,4
1990 5440 69220 92 139872 966856 3,9 49,0
1991 7104 88508 92 146976 1055364 4,9 61,0
1992 5728 80240 93 152704 1135604 4,0 69,8
1993 8384 92740 91 161088 1228344 5,7 71,7
1994 6104 83064 93 167192 1311408 4,3 87,1
1995 2284 42964 95 169476 1354372 1,6 78,7
1996 1488 25264 94 170964 1379636 1,5 75,8
1997 1288 17216 93 172252 1396852 1,0 51,7
1998 1256 24588 95 173508 1421440 0,9 41,7
1999 240 4048 94 173748 1425488 0,6 39,8
2000 1720 21948 92 175468 1447436 1,7 26,0
2001 1020 11752 91 176488 1459188 0,7 19,3
2002 760 9892 92 177248 1469080 0,6 19,4
2003 492 6092 92 177740 1475172 0,4 17,7

На рисунке 16 представлена кривая интенсивности возрастания разности между накопленной фактической и возможной добычей нефти. Данная кривая характеризует интенсивность уменьшения среднегодовых дебитов скважин. По данным кривым определяется возможная динамика падения дебита проектной скважины (рисунок 17).

В таблице 23 представлены прогнозные показатели добычи нефти проектной скважины. Значения годовых отборов нефти вычисляются по формуле

Qг = q·Kэ·Кк·30 т, (38)


где q – дебит нефти, т/сут;

Kэ – коэффициент эксплуатации скважин (0,962);

Кк – коэффициент кратности (9,62)


Таблица 23. Прогнозные показатели работы скважины №1554

Год Дебит нефти, т/сут Годовая добыча, т Накопленная добыча, т
2004 6,14 1778,13 1778,13
2005 4,79 1329,72 3107,85
2006 3,54 981,63 4089,48
2007 2,64 733,85 4823,33
2008 2,11 586,39 5409,72
2009 1,94 539,24 5948,96

3.5.4 Выбор способа эксплуатации и расчет профиля бокового ствола проектной скважины

Предварительный выбор механизированного способа эксплуатации скважины осуществляется исходя из продуктивности пласта и высоты подъема жидкости насосной установкой в скважине.

Динамический уровень и глубина спуска насосного оборудования определяются по кривой распределения давления в скважине (рисунок 18).

Динамический уровень скважины по рисунку 18 составляет 620 м.

Согласно работы /6/ скважина №1554 относится к среднедебитным скважинам средней глубины. Рекомендуемый способ добычи жидкости – установкой электроцентробежного насоса.

Глубина спуска насоса из условия равенства давления на приеме насоса давлению насыщения составляет 1350 м.

Кривые распределения давления строятся по методу Поэтмана-Карпентера с помощью компьютерной программы, разработанной кафедрой РЭНГМ УГНТУ. Исходные данные для расчета представлены в таблице 24.

При эксплуатации скважин с БС ввиду наклонно-направленного профиля бокового ствола и наличия участков набора, стабилизации и снижения зенитного угла второго ствола возможен ряд ограничений по применению типоразмеров насосного оборудования, спускаемого в боковой ствол.


Таблица 24. Исходные данные для расчета распределения давления в скважине

Параметр Значение
Глубина скважины, м 1678
Внутренний диаметр эксплуатационной колонны, мм 100,3
Забойное давление, МПа 12,1
Планируемый дебит жидкости, м3/с 0,00067
Объёмная обводнённость продукции, доли единицы 0,867
Плотность дегазированной нефти, кг/м3 847
Плотность пластовой воды, кг/м3 1012
Плотность газа (при стандартных условиях), кг/м3 1,26
Вязкость воды, м2/с 0,0000011
Вязкость нефти, м2/с 0,0000027
Газовый фактор, м3/м3 62
Давление насыщения нефти, МПа 8,6
Устьевое давление, МПа 2
Средняя температура скважины, К 298
Объёмный коэффициент нефти, доли единицы 1,165
Относительная плотность газа 1,052

При превышении зенитных углов предельных значений неизбежны осложнения при работе глубинного оборудования. Поэтому для профиля бокового ствола накладываются определенные технологические требования.

Спуск глубинного насосного оборудования для эксплуатации скважины осуществляют либо до интервала выхода бокового ствола из скважины, либо непосредственно в боковой ствол.


Рисунок 18 – Распределение давления в скважине №1554


В случае установки насосного оборудования в боковой ствол профиль БС должен обеспечивать свободный спуск и надежную работу подземного насосного оборудования. При бурении необходимо соблюдать требования РД 39–00147275.

Участки скважин, включающие глубины спуска насосов, должны быть пробурены со стабилизацией направления скважины.

Зенитный угол в интервале установки УЭЦН всех типоразмеров должен быть не более 40 градусов, для установок ШСНУ – от 42 до 51 градусов. Допустимый угол отклонения оси насоса ШСНУ от вертикали представлен в таблице 25.


Таблица 25. Допустимый угол отклонения оси насоса ШСНУ от вертикали

Параметры Тип насоса

НСН НСВ
Диаметра плунжера насоса, мм 28 32 43 55 28 32 38 43 55
Угол наклона, град 42 44 50 48 51 51 50 42 43

Проектирование и бурение интервала набора зенитного угла необходимо производить с градиентом, обеспечивающим вписываемость наиболее габаритных узлов подземного насосного оборудования. Для скважин, эксплуатируемых установками штанговых глубинных насосов, должна обеспечиваться вписываемость штанг в колонне насосно-компрессорных труб.

Расчетная интенсивность искривления скважин, предотвращающая касание толом штанг стенок насосных труб представлена в таблице 26.

Внутренний диаметр эксплуатационной колонны для применения установок ЭЦН выбирается согласно техническим условиям и составляет не менее диаметра максимального поперечного размера УЭЦН.


Таблица 26. Интенсивность искривления скважин (градус на 10 м)

Длина штанг, м Диаметр штанг, м

0,019 0,022 0,025
8,0 0,8 0,9 1,1
7,5 0,9 1,0 1,2
7,0 1,1 1,1 1,4

Результаты расчетов максимально допустимой кривизны для различных внутренних диаметров эксплуатационных колонн, обеспечивающей работу УЭЦН в скважине без изгиба, приведены в таблице 27.


Таблица 27. Максимально допустимая кривизна эксплуатационной колонны, обеспечивающая работу УЭЦН в скважине без изгиба (минута на 10 м)

Типоразмер

УЭЦН

Длина,

мм

Эксплуатационная колонна

(наружный диаметрЧтолщина стенки / внутренний диаметр)



140Ч7,0/125,7 140Ч7,7/124,3 140Ч9,2/121,3 146Ч6,5/133,1 146Ч7,0/132,1 146Ч7,7/130,7 146Ч8,5/129,1

УЭЦНМ

5–20–1200

15905 14,9 13,4 10,1 23,0 21,9 20,3 18,6

УЭЦНМ

5–20–1800

20044 9,4 8,4 6,4 14,5 13,8 12,8 11,7

УЭЦНМ

5–50–1300

15522 15,6 14,0 10,6 24,1 23,0 21,4 19,5

УЭЦНМ

5–50–1700

17887 11,8 10,6 8,0 18,1 17,3 16,1 14,7

УЭЦНМ

5–80–1200

16533 13,8 12,4 9,4 21,2 20,2 18,8 7,2

УЭЦНМ

5–80–1550

19592 9,8 8,8 6,7 15,1 14,4 13,4 12,3

УЭЦНМ

5–80–1800

20418 9,0 8,1 6,1 13,9 13,3 12,3 11,3

УЭЦНМ

5–125–1300

18582 10,9 9,8 7,4 16,8 16,0 14,9 13,6

УЭЦНМ

5–125–1800

24537 6,3 5,6 4,3 9,6 9,2 8,5 7,8

УЭЦНМ

5А 160–1450

19482 - - - 6,6 5,9 4,9 3,7

Основные типы профилей скважин с боковыми стволами показаны на рисунке 19.


1 – участок набора зенитного угла; 2 – участок стабилизации зенитного угла; 3 – участок снижения зенитного угла; 4 – участок набора зенитного угла; 5 – горизонтальный забой скважины

Рисунок 19 – Типы профилей боковых стволов


Тип профиля бокового ствола выбирается, исходя из выбора глубины и места установки насосного оборудования. Решение об установке глубинного насосного оборудования в боковой ствол должно приниматься из условия соответствия зенитных углов наклона ствола скважины в интервале спуска насоса допустимым для данного типоразмера глубинного оборудования. При этом необходимо соблюдать технологические требования к профилю ствола, приведенные на рисунке 20 /7/

Необходимо добиваться того, чтобы профиль скважины с БС позволял производить спуск насосного оборудования непосредственно в боковой ствол, так как в процессе эксплуатации скважины возникает необходимость изменения глубины подвески оборудования с целью регулирования режимов работы скважины, увеличения дебитов и депрессии на пласт. Поэтому при проводке бокового ствола необходимо строго соблюдать определенные в геолого-техническом наряде зенитные углы наклона БС.

Соблюдение технологических требований к профилю бокового ствола и допустимых зенитных углов наклона ствола БС в конечном счете обеспечивает повышение надежности работы глубинного оборудования и эффективности эксплуатации скважины.

В скважине №1554 спуск установки центробежного насоса в боковой ствол невозможен из-за несоответствия поперечных размеров насоса внутреннему диаметру хвостовика: внутренний диаметр 114-мм хвостовика составляет 100,3 мм, в то время как минимальный поперечный размер погружных центробежных насосов группы 5 (92 мм) с учетом толщины кабеля составляет 101,7 мм. /8/

Поэтому глубина зарезки бокового ствола определяется из условия, что УЭЦН будет установлен в основном стволе. При бурении бокового ствола с клина-отклонителя последующая эксплуатация скважины возможна только при установке насоса над «окном» бокового ствола. При установке временного моста для вырезания «окна» последующая эксплуатация возможна с установкой насоса в основном стволе ниже интервала вырезания «окна».

Расчет профиля бокового ствола скважины №1554 производится для случая установки насоса над интервалом вырезания «окна». В случае превышения интенсивностей набора кривизны выше предельных значений изменяется глубина вырезания окна и насос в последующем устанавливается в основной ствол ниже интервала забуривания.

Исходные данные для расчета профиля бокового ствола скважины №1554:

– магнитный азимут (41 0);

– глубина интервала вырезания «окна» (1450 м)

– проектная глубина по вертикали (1678 м);

– проектное смещение (250 м);

– угол вхождения в пласт (0 0)

Конструкция скважины №1554 представлена в таблице 28.

Для проектируемой скважины №1554 выбираем S образный профиль. Данный профиль наклонно-направленной скважины применяется в тех случаях, когда вскрытие продуктивного объекта предусматривается вертикальным стволом.


Таблица 28. Конструкция скважины №1554 Туймазинского месторождения

Обсадная колонна Условный диаметр, мм Глубина спуска, м Глубина цементирования (от устья), м
Направление 426 17 0
Кондуктор 299 111 0
Эксплуатационная 168 1357 217

Радиус кривизны участка снижения зенитного угла


м, (39)


где А – проектное смещение забоя бокового ствола, м;

Н – проектная глубина, м;

Нв – глубина интервала зарезки бокового ствола, м;

R1 – радиус кривизны участка набора зенитного угла, определяемого по значениям интенсивности искривления скважины компоновками бурильного инструмента для бурения боковых стволов, м. /9/

Зенитный угол в конце участка начального искривления


, (40)

Результаты расчета профиля бокового ствола скважины №1554 по участкам изменения зенитного угла приведены в таблице 29. На рисунке 21 показан расчетный профиль проектного бокового ствола.

Расчет произведен для четырехинтервального профиля скважины согласно работы /21/.


Таблица 29

Участок Радиус кривизны, м Отход, м Глубина, м Длина участка по стволу, м
Набора зенитного угла 148 17,5 1477,5 39,5
Стабилизации - 237,5 1645,0 280,0
Спада зенитного угла 229 250,0 1674,0 54,6

3.6 Особенности эксплуатации скважин с боковыми стволами


Практика бурения боковых стволов из обсаженных скважин показала, что этот метод является одним из наиболее эффективных при интенсификации добычи нефти благодаря относительно малой стоимости бурения по сравнению с бурением новых скважин, возможности использования существующей системы обустройства скважины и месторождения в целом. Однако бурение БС производилось и производится без учета требований с позиции последующей их эксплуатации механизированным способом. Вопросы техники и технологии оптимальной эксплуатации таких скважин требуют своего решения.

При эксплуатации скважин с БС могут иметь место следующие варианты.

1 Высокое пластовое давление и глубокий условно вертикальный участок старого ствола, исключающее необходимость подвески насосной установки в боковой ствол.

2 Низкое пластовое давление и небольшой по длине условно-вертикальный участок старого ствола, вынуждающие спускать насосную установку в боковой ствол. В этом случае факторами, осложняющими эксплуатацию механизированным способом, являются участок набора кривизны, характеризуемый градусом кривизны, и наклонный участок, отрицательно влияющие на рабочие характеристики оборудования.

Решение о спуске насосного оборудования должно приниматься с учетом сопоставления ожидаемого дебита при подвеске установки в условно-вертикальном участке и при ее спуске в боковой ствол. В первом случае учитывается вынужденное повышение динамического уровня, снижение коэффициента подачи насоса и повышение газосодержания (из-за снижения давления на приеме); во втором случае учитывается снижение коэффициента подачи установки из-за большого наклона, снижение надежности оборудования при работе в боковом стволе и спускоподъемных операциях.

Также выбор места установки насоса зависит от наличия типоразмеров насосного оборудования на предприятии, так как не все глубинные насосы можно спустить в боковой ствол.

При бурении скважин с БС в зоне набора угла наклона образуются интервалы с малым радиусом кривизны ствола, предъявляющие особые требования к технике эксплуатации скважин. К их числу можно отнести.

1 Необходимость повышения надежности установок при проведении спускоподъемных работ из-за роста вероятности возникновения в узлах установок остаточной деформации, приводящей к поломке во время ее работы.

2 Обеспечение преодоления значительных сил сопротивления движению плунжера насоса, частично деформированного в искривленном участке ствола скважины, в случае спуска в скважину штангового глубинного насоса.

Также одним из факторов, определяющих дальнейшую эксплуатацию скважин с БС глубиннонасосным оборудованием, является то, что крепление бокового ствола осуществляется хвостовиком малого диаметра (102 и 114 мм), что ведет к ограничению применения типоразмеров насосного оборудования, спускаемого в боковой ствол.

В таблице 30 приведены размеры насосного оборудования, а в таблице 31 внутренние диаметры эксплуатационных колонн боковых стволов.


Таблица 30. Размеры насосного оборудования, мм

Насос Наружный диаметр
НВ1Б 29 48,2
НВ1Б 32 48,2
НВ1Б 38 59,7
НВ1Б 44 59,7
НВ1Б 57 72,9
НН2Б 32 56
НН2Б 44 70
НН2Б 57 84

Таблица 31. Размеры НКТ и хвостовиков боковых стволов, мм

Наружный диаметр хвостовика БС Внутренний диаметр хвостовика БС Условный диаметр / внутренний диаметр НКТ Диаметр муфты НКТ
102 88,6 60/50 73
114 100,3 73/62 89

Из таблиц видно, что в БС с эксплуатационной колонной диаметром 102 мм возможен спуск вставных насосов типоразмером 29 и 32 мм, невставных – 32 и 44 мм; в БС с эксплуатационной колонной диаметром 114 мм возможен спуск всех вставных и неуставных насосов.

В настоящее время все скважины с БС на Туймазинском месторождении эксплуатируются размещением подземного оборудования в старом стволе, т.е. выше уровня зарезки бокового ствола. Это естественно приводит к уменьшению депрессии на пласт и, в конечном счете, к уменьшению добычи нефти.

На рисунке 22 представлен график зависимости снижения суточного дебита скважин от длины хвостовика по вертикали для разных категорий скважин /20/.

На категории скважины были разбиты по величине потенциального дебита, определяемого по уравнению


(41)


где k – коэффициент продуктивности скважин, м3/сут·МПа;

Рпл – пластовое давление, МПа.

Q – потенциальный дебит, м3/сут

Из графиков видно, что при длине хвостовика по вертикали 500 м снижение суточного дебита скважины от потенциального достигает 40%.


1, 2, 3, 4 – для скважин с потенциальным дебитом соответственно 5, 10, 15, 20 м3/сут

Рисунок 22 – Зависимость потерь добычи нефти от длины хвостовика

Для исключения потерь потенциального дебита скважины предложены следующие технологии.

1 Бурение бокового ствола производится с установкой временного моста. После завершения бурения бокового ствола мост разбуривается, и насосное оборудование спускается в старый ствол ниже уровня забуривания бокового ствола. Это позволяет обеспечить работу насосного оборудования в благоприятных условиях по кривизне ствола и сохранить потенциальный дебит. Технологическая схема данной технологии приведена на рисунке 23.

2 Технология забуривания бокового ствола с установкой временного моста также может быть рекомендована для малодебитных (чисто нефтяных) скважин. При этом используется тот же принцип, что и в предыдущем случае, с той лишь разницей, что сохраняется основной ствол, как для притока нефти, так и для размещения насосного оборудования.



1 – глубинный насос; 2 – боковой ствол

Рисунок 23 – Схема эксплуатации скважины с боковым стволом после разбуривания временного моста


3 В отдельных случаях (при заклинивании в обсадной колонне подземного оборудования, инструмента или смятии колонны и др.) возникает необходимость забуривания бокового ствола с небольшой глубины. В этом случае неизбежен спуск насосного оборудования в БС, а при диаметре БС 102 или 89 мм использование обычной насосной установки с НКТ практически невозможно. В этом случае может быть применена штанговая насосная установка для безтрубной эксплуатации скважин, разработанная институтом БашНИПИнефти (рисунок 24).

При спуске оборудования в БС в диапазоне зарезаки бокового ствола и в интервалах интенсивного набора зенитного угла в штанговой колонне глубинного насоса возникают большие изгибающие напряжения. Для снятия этих напряжений институтом БашНИПИнефти был разработан штанговый шарнир, который позволяет значительно снизить изгибающие напряжения (рисунок 25).


1 – колонна штанг; 2 – насос; 3 – опора насоса; 4 – хвостовик

Рисунок 24 – Схема безтрубной эксплуатации скважины


1 – боковой ствол; 2 – колонна штанг; 3 – центратор; 4 – шарнир

Рисунок 25 – Схема работы штанговой колонны при входе в БС с шарниром и без шарнира

4. Экономическая эффективность проекта


4.1 Технико-экономическая и организационная характеристика ООО НГДУ «Туймазанефть»


Под организационной структурой нефтегазодобывающего управления ООО НГДУ «Туймазанефть» понимается совокупность органов управления, а также системы их взаимосвязи и взаимодействия. Формирование отдельных органов и аппарата в целом предполагает наличие определенных функций, объемов управленческих работ и особенностей объектов управления. Организационная структура ООО НГДУ «Туймазанефть» представлена на рисунке 26.

Руководство ООО НГДУ «Туймазанефть» осуществляется директором НГДУ, отвечающем за результаты производственно-хозяйственной деятельности. У руководителя предприятия имеются заместители: главный геолог, главный инженер, заместитель директора по экономическим вопросам, заместитель директора по общим и социальным вопросам, заместитель директора по производству, главный бухгалтер, главный юрист, заместитель директора по капитальному строительству.

Экономические службы возглавляет главный экономист, который руководит работами по анализу и планированию производственно-хозяйственной деятельности. Ему подчинены отделы: отдел организации труда и заработной платы, планово-экономический отдел, группа по регистрации объектов недвижимости. Главный инженер руководит всеми производственными подразделениями, ему подчиняются заместитель главного инженера по технике безопасности, главный технолог, производственный и технический отделы, главный механик, главный энергетик.

Для организации и управления работ по капитальному строительству предусматривается заместитель директора по капитальному строительству, которому подчинены строительно-монтажное управление (СМУ), отдел капитального строительства (ОКС). Вопросы материально-технического снабжения и сбыта решает заместитель директора по общим и социальным вопросам, который также контролирует работу социальных учреждений.

Главный геолог и подчиненные ему отделы занимаются такими проблемами, как выбор и обеспечение главных направлений геолого-поисковых и разведочных работ, геологический контроль в процессе бурения и опробования скважин, оценка нефтегазоносности разбуриваемых площадей, обеспечение заданий по приросту запасов нефти.

Вспомогательные цеха, такие как цех подземного и капитального ремонта скважин (ЦПРС и ЦКРС), прокатно-ремонтный цех эксплуатационного оборудования (ПРЦЭО), прокатно-ремонтный цеx электрооборудования и электроснабжения (ПРЦЭиЭ), цех автоматизации производства (ЦАП), цех антикоррозийных покрытий, подчиняются директору НГДУ.

Каждое предприятие само формирует организационную структуру управления, которая утверждается руководителем предприятия.

Предметом и основной целью НГДУ «Туймазанефть» является добыча и подготовка нефти и газа, разработка и обустройство нефтяных месторождений.

В соответствии с предметом и целью своей деятельности НГДУ «Туймазанефть» осуществляет следующее:

– планирует свою деятельность, руководствуясь при этом заказами, нормативами, а также заключенными хозяйственными договорами;

– обеспечивает выполнение плана по добыче нефти и газа, внедрение в производство передовой техники, прогрессивных материалов, высокоэффективных ресурсосберегающих и безотходных технологий;

– обеспечивает сбор, подготовку, транспорт нефти и газа;

– производит водозабор, подготовку, транспорт воды, закачку в пласт рабочих агентов (вода, поверхностно-активные вещества и др.);

– осуществляет эксплуатацию, текущий и капитальный ремонт инженерных сетей, линий электропередач, электроподстанций, электрооборудования, систем автоматики и телемеханики, дорог;

– осуществляет эксплуатацию нефтегазодобывающих производств и объектов, разрабатывающих нефтяные месторождения;

– определяет потребность НГДУ в материальных ресурсах и приобретает их по договорам, обеспечивает их надежное хранение и рациональное использование;

– разрабатывает и выполняет мероприятия по охране природы и окружающей среды.

Для оценки деятельности предприятия используют систему наиболее важных технико-экономических показателей. Эта система должна наиболее полно и объективно оценивать результаты деятельности НГДУ. Основные показатели деятельности предприятия приведены в таблице 32.

ООО НГДУ «Туймазанефть» ведет разработку 12 нефтяных месторождений, девять из которых с поддержанием пластового давления. В настоящий момент ввиду того, что большинство месторождений вошло в позднюю или заключительную стадии разработки, на нефтяных промыслах НГДУ «Туймазанефть» требуется проведение различных мероприятий по широкому внедрению методов увеличения нефтеотдачи пластов, экономии материальных и топливно-энергетических ресурсов и снижению эксплуатационных расходов.

Средняя обводненность продукции скважин по НГДУ на текущий момент составляет 86,08% причем обводненность основного месторождения – Туймазинского – составляет 90,11%.

Ввиду значительного сокращения объема добычи нефти со скважин Туймазинского нефтяного месторождения, при сохранении объема добычи жидкости, возрастает доля затрат на добычу, сбор, подготовку и утилизацию пластовой